

D.3.2 METHOLOGY FOR EVOLUTIONARY
REQUIREMENTS

Gábor Bergmann (BME), Elisa Chiarani (UNITN),Edith Felix (THA),
Benjamin Fontan (THA), Charles Haley (OU), Fabio Massacci
(UNITN), Zoltán Micskei (BME), Bashar Nuseibeh (OU), Federica
Paci (UNITN), Thein Tun (OU) Yijun Yu (OU), Dániel Varró (BME)

Document information

Document Number D.3.2

Document Title Methodology for Evolutionary Requirements

Version 1.33

Status Final

Work Package WP 3

Deliverable Type Report

Contractual Date of Delivery 31 January 2010

Actual Date of Delivery 29 January 2010

Responsible Unit OU

Contributors OU, UNITN, BME, THA

Keyword List

Dissemination level PU

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 2/56

Document change record

Version Date Status Author (Unit) Description

1.1
21 September

2009
Draft

Federica Paci

(UNITN)

Outline of the

deliverable

1.2 6 October 2009 Draft
Zoltan Micskei

(BME)

Added subtopics for

chapter 4

1.3 4 November 2009 Draft
Federica Paci

(UNITN)

First draft of section 3

added

1.4 5 November 2009 Draft Yijun Yu (OU)

Section 1, 5-7 based

on the submitted

ESSOS paper, section

2 is newly written

1.5 6 November 2009 Draft

Gábor

Bergmann

(BME)

First draft of Section

4

1.6 9 November 2009 Draft
Benjamin

Fontan (THA)

Add subtopic in

section 3 (about

DOORS and DSML)

Add subtopic in

section 5 (Manage

Change in DOORS and

DSML)

1.7 10 November Draft
Federica Paci

(UNITN)

Add Input for Section

5

1.8
12 November

2009
Draft

Gábor

Bergmann

(BME)

Elaborated Section 4

1.9
13 November

2009
Draft Yijun Yu (OU)

Edited the three

meta-models in

Section 3 and 5.

Added the mapping of

concepts in the

Thales meta-models

in Section 3 to the

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 3/56

general one

proposed.

Fixed the references.

Note the new meta-

models are also

uploaded as the

source file for UMLet.

1.10
13 November

2009
Draft

Charles Haley

(OU)

Checked with the

meta-models about

Security

Requirements and

Argumentations. Also

edited the definitions.

1.11
26 November

2009
Draft

Gábor

Bergmann

(BME)

Revised evolution

rules Meta-model,

added initial example

1.12 7 December 2009 Draft

Yijun Yu (OU)

Charles Haley

(OU)

Bashar

Nuseibeh (OU)

Revised the

methodology, refined

the meta-models to

highlight the

contributions. Drafted

the change

management meta-

model to be

consistent with the

discussion notes.

1.13 8 December 2009 Draft
Yijun Yu (OU)

Thein Tun (OU)

Revised the meta-

models, and checked

and edited the

executive summary,

sections 2 and 3.

1.14 9 December 2009 Draft

Gábor

Bergmann

(BME)

Minor revisions in

text and Figures 8-9.

1.15 16 December 2009 Draft
Benjamin

Fontan (THA)

Add subsection 3.1.3

(Security

Requirement Analysis

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 4/56

in Thales Context)

Add subsection 3.2.2

(Application of meta-

model 3.2 in Thales

Requirement

Workbench)

Add subsection 3.3.2

(application of meta-

model 3.3 in DOORS

T-REK)

Rearrange and

simplify section 5

Add definitions in

section 9

1.18 18 December 2009 Draft

Federica Paci,

Fabio Massacci

(UNITN)

New meta-model for

requirements added

to Section 3

Structure of section 3

changed.

Example added

1.19 21 December 2009 Draft
Charles Haley,

Yijun Yu (OU)

Update the text about

the changed

requirements meta

model

1.22 25 December 2009 Draft
Federica Paci

(UNITN)

Example with figures

updated

 8 January 2010 Review
Ruth Breu

(Innsbruck)

Review of the version

1.22 draft received

1.23 12 January 2010 Draft
Elisa Chiarani

(UNITN

First Quality Check

completed based on

version 1.22. Minor

remarks added

1.24 13 January 2010 Draft Federica Paci
Received the

reviewing comments

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 5/56

(UNITN) from Ruth Breu.

Addressed some of

the comments on

example and Thales

section

1.25 13 January 2010 Draft
Benjamin

Fontan (THA)
Update section 7

1.26 14 January 2010 Draft

Gábor

Bergmann

(BME)

Added evolution rule

example with model

manipulation

1.27 15 January 2010 Draft
Thein Tun, Yijun

Yu (OU)

Addressed Ruth’s

comments concerning

Sections 1, 2, 3 and 6.

1.28 20 January 2010 Draft
Federica Paci,

(UNITN)

Modified Example

Added

1.29 20 January 2010 Draft

Gábor

Bergmann

(BME)

Remade evolution

rule example to fit the

new concept; also

expanded Section 5 to

link the two examples

1.30 25 January 2010 Draft
Thein Tun (OU),

Yijun Yu (OU)

Fixing the remaining

issues of the first

quality check

1.31 26 January 2010 Draft

Gábor

Bergmann

(BME)

Adjusting evolution

rules chapter after

the reordering.

1.32 26 January 2010 Draft
Elisa Chiarani

(UNITN)
Final Quality Check

1.33 27 January 2010 Final
Federica Paci

(UNITN)

Final Version with

last comments about

quality check

addressed

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 6/56

Executive summary

As a software system evolves, security concerns need to be analyzed to re-
evaluate the impact of changes on the system and the assumptions on environmental
properties.

Traditionally, the security requirements were handled in an ad-hoc way, while
requirement models are often embedded in natural language descriptions which lead to
inconsistent interpretations with respect to the meaning of the requirements. These
made it difficult to analyze for requirements changes. By adopting a model-based
engineering methodology, we propose to investigate such changes using a consistent
conceptual model of evolving security requirements which incorporates the state-of-art
requirement modeling languages such as Tropos and Problem Frames. As a unified
extension to existing Security Requirements frameworks (e.g., Secure Tropos and
Abuse Frames), our new meta-model is explicit in representing target specifications
where vulnerability can be revealed. Essential elements such as threats are also made
explicit in order to analyze attacks that are assumed to be present in a hostile
operating environment. The overall goal of the model is to provide mechanisms for
protecting valuable assets from damage. Using our conceptual model for security
requirements, we observe how it is possible to construct arguments to examine the
security of systems as they change.

To address the challenge of evolutionary security requirements, we lay out the
conceptual meta-models, and the general methodology to handle changes on security
requirements, including how to represent security requirements, how to model the
changes of them, how to manage the changes and how to argue that the changes are
fit for the purposes. As a result, we obtained a consistent meta-model representing the
key concepts related to security requirements, which not only improves the elicitation of
security requirements, but also enables further analysis at the design and validation
stages.

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 7/56

Index

DOCUMENT INFORMATION 1

DOCUMENT CHANGE RECORD 2

EXECUTIVE SUMMARY 6

INDEX 7

1 INTRODUCTION 9

2 METHODOLOGY FOR EVOLUTIONARY SECURITY REQUIREMENTS 11

3 MODELING SECURITY REQUIREMENTS 14

3.1 Meta-model for requirements representation 14

3.2 Meta-model of Security Requirements Evolution 16

4 ARGUMENTATION OF SECURITY REQUIREMENTS 19

5 AN EXAMPLE OF REQUIREMENTS EVOLUTION MODELING 21

6 SPECIFYING RULES FOR EVOLUTIONARY CHANGES 24

6.1 Goals for the evolution rules 24

6.2 Using model transformations for evolution 24

6.2.1 Incremental transformations 25

6.2.2 Event – Condition – Action semantics 28

6.2.3 Change-driven transformations 29

6.3 Meta-model for evolution rules 30

6.4 Examples for evolution rules 32

6.4.1 Problem description 32

6.4.2 Solution 1: one rule per elementary change 32

6.4.3 Solution 2: single coarse-grained rule 33

6.4.4 Solution 3: automatic problem correction 34

6.4.5 Example rule application 35

6.4.6 Further discussions 36

7 SECURITY REQUIREMENT ANALYSIS IN PRACTICE 37

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 8/56

7.1 The security risk analysis method: Principles 37

7.2 DOORS T-REK 38

7.3 Application in Thales Requirement Workbench 40

7.3.1 Thales Security DSML 40

7.3.2 Mapping between DSML conceptual models and the security requirements meta-
model 42

7.3.3 From DSML to DOORS T-REK 43

7.4 Evolution Management 46

7.4.1 ChangeLine Meta model 46

7.4.2 ChangeRequest Meta-model 47

8 CONCLUSIONS 50

9 ACKNOWLEDGEMENT 51

REFERENCES 52

GLOSSARY 54

Eliminato: 42

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 9/56

1 Introduction

Long-lived software systems often undergo evolution over an extended period of time.
Evolution of these systems is inevitable as they need to continue to satisfy changing
business needs, new regulations/standards and the introduction of novel technologies.
Such evolution may involve changes that add, remove, or modify features; or that
migrate the system from one operating platform to another. These changes may result
in requirements that were satisfied in a previous release of a system not being satisfied
in its updated version. When evolutionary changes violate security requirements, a
system may be left vulnerable to attacks [14].

Dealing with changes to security requirements poses several challenges, including:

• Ad hoc elicitation of security requirements. Most security requirements are
implicit or are added after security violations have happened, which makes it
difficult to prevent the problems and address the vulnerability in a proactive
way;

• Imprecise modeling of requirements. Security requirements, by their very
nature, demand a precise description that can be used to analyze, argue and
evaluate. Vaguely expressed informal natural language descriptions, such as
the requirement traceability matrix in DOORS, are difficult for analysts to give
an assessment of the problem and to provide useful mitigation advices;

• Change management of security requirements are not integrated with the
requirements modeling tools. It requires an explicit mapping between the
changes of security requirements and the system vulnerability to be able to
assess their impact on the system-to-be. Due to the large gap between the
requirements and the design and implementation, mitigation is often a late
response to continuous evolution of life-long software systems.

• Even when changes have happened as systematically, there is a lack of
mechanism to formally argue about these changes with respect to the domain
knowledge of the system. Will the system collapse due to a subtle change of a
trust assumption, for example about the system boundary? Can the system
respond to the introduction of a new fact or domain knowledge that often
invalidate the existing justification of security? As the security requirements are
often proposed by stakeholders, it is important to reach an agreement between
them on the level of security of the system-to-be.

The above difficulties are intertwined in the process of requirements engineering for
secure software systems. When addressing these challenges, we propose to start with
a well-known engineering principle that is simple enough to deal with different
requirement modeling approaches, while at the same time it allows for the high-level
analysis of the changes.

According to Zave and Jackson [22], a problem-oriented system requirements analysis
involves the understanding of the indicative domain properties in the physical world W
and the specifications of the machine S, in relation to requirements R that are the
optative domain properties. Descriptions of phenomena of given (existing) domains

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 10/56

are indicative; the phenomena and resulting behaviour can be observed. Descriptions
of phenomena of designed domains (domains to be built as part of the solution) are
optative; one hopes to observe the phenomena in the future.

These relationships between the properties establish a structure in order to facilitate
the analysis of the entailment relation W, S ├ R.

In addition, to extend Jackson's framework to consider security, security-related
concepts such as assets, threats, vulnerabilities, attackers, trust assumptions, risks
and satisfaction argumentation [11] must be added. When a system changes, the
entailment relation W, S├R may no longer hold. To be able to re-analyze the security
of the system, the processes and rules of changes on the security requirements
models need to be represented in order to re-establish the satisfaction of W’, S’ ├ R’
where W', S', R' are respectively the changed domain properties in the description of
the problem. Since security requirements tend to be hard to guarantee, effective
argumentations on the satisfaction of the entailment relation needs to include both
positive and negative evidence to establish to what extent the trust assumptions hold
and the system boundaries encompasses.

In this document, we take the position that changes of security requirements can be
modeled from three viewpoints, namely,

• A problem-oriented analysis that relates the changes of security requirements
to both the changes in the specifications and the changes in the environment
contexts;

• A sequence of transactions that views changes as transitions of one valid state
of the model to another one, given that guard conditions, triggering events and
the actions can be specified. In particular, these transactions are applied to the
change management processes for security risk analysis to include the status
indicating at which stage the security problems manifest; and

• An argumentation structure for the claimed satisfaction of security requirements
by nesting both the positive and the negative evidence in terms of facts,
domain-specific knowledge, rebuttals.

Since these viewpoints are related, we identify several possible connections of them.
These connections, we hope, will help one obtain a meta-meta-model that permits
description of all changes. Throughout the document, we illustrate the models using
some examples in the Arrival Management (AMAN) system from the air traffic
management domain.

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 11/56

2 Methodology for Evolutionary Security
Requirements

As mentioned earlier, the challenges of evolving security requirements engineering
arise from multiple facets of engineering problems. Existing methodologies deal with
the changes in security requirements with different focuses. For example, Secure
Tropos have been used to model both functional and non-functional requirements of
stakeholders as security goals. By modeling the delegation and trust relationship
among these stakeholders, security problems of a social-technical system are elicited
and reasoned about at a high level. On the other hand, Problem Frames approaches
for security (e.g., abuse frames), focus primarily on modeling the relationship among
the specifications of a software system, the indicative domain properties and optative
requirements. As a result, patterns relating problems with solutions become reusable
for such problem-oriented analysis. Both requirements engineering approaches handle
risk assessment by extending the basic concepts with relatively new concepts to be
able to handle the risk factors of likelihood and impact, and to be able to provide
guidance for the mitigation of security problems in terms of threats, assets and
damages, etc.

Although individually these approaches are powerful in modeling and analysis of
different perspectives of the security problems, it is easy to see that none of these
approaches alone could provide a comprehensive basis to reason about the changes
of security requirements. Such a combination could benefit from the strengths of
individual methodology, making clearer about the situation of the subject system in
terms of security requirements. Additional benefits include enabling a rule-based
evolution support for transforming and maintaining the unified situations, extending a
process-oriented change management support for documenting the problems in terms
of security, and forming a basis for arguing the security of the life-long system for
these documented problems.

In fact, such a comprehensive framework requires fewer rather than more concepts. It
would be considered a failure for us by simply adding up the existing concepts from
different methodologies. Otherwise, it is still hard to combine the different modeling
approaches to provide a consistent picture of the situations before or after the
changes. Applying such a naïve approach invites inconsistency between these
concepts, for the sake of security analyses, the situation could get worse than limiting
oneself to applying each methodology separately. Therefore the first step in our
methodology involves identifying equivalent or similar concepts among di fferent
conceptual frameworks . As a result, the combined situation framework has fewer
concepts than the simple addition, and they are amenable to advanced analysis of the
evolution of the life-long software systems.

After the first step, our methodology demonstrates the usefulness of the combined
framework that can take advantage of continuous transformation-based evolution
rules that govern the adaptation of evolving security requirements. These evolution
rules will be developed into model-based transformation rules to automate the change
process. The contribution of such transformation rules will help maintain the security of

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 12/56

life-long evolving system through a continuous control loop that is composed of
triggering events, conditions of situations and transforming or adaptation actions.

In parallel to the management of changes of requirements situations, security
argumentation framework will help to provide detailed justifications for the
documentation. The truth maintenance combines the change management systems
and the argumentation framework through the control loops, implementing a full
support at the requirements level for the continuous evolution of life-long software
system.

Putting these individual control loops of evolution rules together, our methodology will
be applied and supported by adapting the existing change management approaches
such as DOORS. The introduction of new requirement attributes will help the
documentation of security requirements, paving a way for the expression of the formal
requirements models.

In summary, our methodology for addressing evolutionary security requirements is
based on three interleaving steps: modeling, analysis and design.

• During the modeling step, models of evolutionary security requirements are
elicited and generalized according to three meta-models that capture
respectively any representation of security requirements, any changes of
security requirements, any managing processes of a security requirement and
any argumentation about security requirements.

• During the analysis step, the models of security requirements will be used to
serve the reasoning process, to discover any vulnerability early on, in order to
fix them before it is too late in the design/implementation phases in software
development.

• During the design step, the screened security requirement model will be used to
construct a traceability mapping into security constraints on the design artifacts
for the implementation purposes.

At this stage of the project, our focus is put on the modeling step, which will be detailed
in the following sections including the following sub-steps:

1. Model the problem-oriented concepts W, S ├ R with richer concepts from
Tropos requirements engineering methodologies (and their refinement to
security)

2. Validate your design models against security requirements through
argumentation

3. Define the changes you accept, and what is the action to take to create a
consistent new state

4. Define how to control the changes (when you monitor the events and conditions
and resolve them through actions, etc)

It is our aim to be able to define the extra attributes needed for the Thales’s
DSML+DOORS tool to elicit security requirements from the customers, and our
objective to apply the methodology to the ATM and SmartHome case studies to cross
validate the following research questions: Are all these concepts needed and useful in
practice? Is there is anything missing in practice? Does the tool support improve the
productivity in eliciting and analysis of the changes of security requirements? It is our

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 13/56

hope that a series of detailed case studies will gain clear answers to these questions
and ultimately justify the research results.

The meta-models for the above four steps are detailed in Sections 3-6 respectively.
Section 7 illustrates the use of these steps in a change management process. Section
8 concludes the document with lessons learnt.

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 14/56

3 Modeling Security Requirements

In this section we present, first, the meta-model to represent requirements, and then
we show how one can represent the evolution of requirements using the notions of
situations and evolution rules.

3.1 Meta-model for requirements representation
In this section we introduce a new meta-model for requirements elicitation that
supports the representation of dependencies between requirements, the system-to-be,
and the context in which the system is going to operate, and of security related
concepts necessary to reason on security requirements satisfaction. In fact, our meta-
model inherits concepts from problem-frames and goal-oriented requirements
elicitation approaches, and risk analysis approaches. From problem-frames we borrow
the dependency between requirements, the system-to-be, and the context in which the
system is going to operate. In fact, according to Zave and Jackson [22], a problem-
oriented system requirements analysis involves the understanding of the indicative
domain properties in the physical world W and the specifications of the machine S, in
relation to requirements R, where S and R are the optative domain properties. From
the Secure Tropos methodology, we borrow the representation of the requirements of
the system-to-be using the notion of goals, softgoals and quality constraints; and of
how the system-to-be satisfies the requirements concerning the objects such as actors,
processes and resources. From the security analysis methodology, we borrow the
concepts of vulnerabilities, attackers and attacks. Asset in this meta-model is similar to
target in the risk meta-model of WP5, where it is related to risk through threat and
vulnerability.

Figure 1 represents the entities characterizing our meta-model to represent
requirements and the relations between them.

Figure 1. The meta-model for requirements elicitati on

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 15/56

We have outlined in green the concepts inherited from the goal-oriented approaches, in
magenta the concepts taken from Problem Frames approaches, and in red the
concepts borrowed from risk analysis approaches.

A situation of our requirements model is expressed in terms of propositions and
objects. Propositions are the sharable objects of attitudes and the primary bearers of
truth and falsity. A proposition can be an optative or an indicative property concerning
objects. An object is an actor, a process or a resource. When a stakeholder (actor)
wants a desired or optative property, it is modeled as initial requirements, which can be
refined into derived requirements. Therefore, requirements are desired or optative
properties that the system-to-be ought to have, as wanted explicitly by stakeholders.
Initial requirements and derived requirements can be captured by goals, the objectives
that the system-to-be should achieve. A derived requirement can also be a soft goal,
which does not have a clear-cut evaluation of the truth value. . A security goal
expresses that an asset needs to be protected from harms. An anti-goal is a goal of an
attacker which may obstruct the achievement of a security goal. Both security and anti-
goals are soft goals.

Unlike requirements, a specification fulfils certain requirements under given indicative
domain properties.. It usually captures certain dynamic behavior in order to satisfy
software requirements; therefore specifications are modeled as processes.

Objects are entities used to describe a state of the world. An object can be dynamic or
static. A static object can be an actor or a resource. An actor is an intentional entity
such as a human, a device, a legacy software or software-to-be component that
performs actions to achieve its own goals. We consider an attacker as a particular
actor who wants an anti-goal to be satisfied. A resource is a physical or an
informational entity which has no intention by itself. An asset is a resource which has a
value and needs to be protected. Vulnerability is a weakness, a flaw or a deficiency
that is exploited to carry out an attack which causes harm to or damages an asset. A
dynamic object can be a process that consists of activities. An activity is a sequence of
actions that can be performed by an actor to fulfill a goal.

A situation is a partial state of the world where some propositions are true and some
other propositions are nor true nor false. Thus, a situation consists of objects and
propositions concern these objects. Particular types of situations are context, the
domain, and an attack. The context is a situation within which the system-to-be will
operate. A context consists of several domains which interface with each other. An
attack allows an attacker to fulfill an anti-goal. In particular, an attack is a situation in
which vulnerability is exploited to cause damage on an asset.

For requirements analysis, these entities are related in the following seven basic types:

• Trusts is a relationship from one actor to another, which indicates the belief of
one actor that the other will provide a resource or will perform a certain activity ;

• Delegates is a relationship from one actor to another which specifies that the
fulfillment of a goal or the provisioning of an activity/resource;

Both trusts and delegates relationship are associated with a dependum, which
specifies which object (resource/process) or which requirement (goals, softgoals)
are trusted or delegated from one actor to another.

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 16/56

• Provides is a relationship either from an actor to a resource, which specifies
that an actor provides a certain resource; or from an activity to resources; Uses
is the relationship opposite to Provides.

• Carries Out is a relationship either from an actor to a process, which specifies
that an actor carries out a certain activity; Carries Out is a relationship either
from an actor to a process, which specifies that an actor carries out a certain
activity.

• Fulfills is a relationship from resources and activities to a goal, which specifies a
goals is fulfilled by a combination of the resources and the activities;

• Wants is a relationship from actors to goals which associates an actor with its
goals, including security and anti-goals.

• Contributions is a relationship among goals/security goals which indicates that a
goal contribute to the satisfaction of another goal.

• Decomposes is a relationship from a goal to its subgoals, which indicates that a
goal can be refined: AND-decomposition lists subgoals that must all be satisfied
in order to satisfy the goal, whereas OR-decomposition suggests alternative
ways to satisfy the goal.

For security requirement analysis, the following seven specific relationships are
considered on an attack situation and a security goal:

• Attacks is a relationship from one situation to a vulnerable actor;

• Damages is a relation from an attack to the assets;

• Exploits is a relationship from an attack to a vulnerability, which is a (part of)
specification that can be vulnerable to expose security problems;

• Protects is a relationship from a security goal to a set of valuable assets;

• Obstructs is a relation from an anti-goal to the corresponding security goal.

Such problem analysis for goal satisfaction can be done using proposition logic
qualitatively, or using risk analysis quantitatively. In either way, arguments on the
fulfillment of security requirements need to be acceptable after a negotiation process
during which the trusted domain assumptions may not always hold. Therefore, the
framework as such can support extensively evolving security requirements.

3.2 Meta-model of Security Requirements Evolution
After specifying the static view of situations about the security requirements, the next
step in our methodology is to deal with the dynamic view. In a reactive view of the
classification, situations are observed to change over time. Discrete changes have a
sequence of change descriptions associated with timestamps, while continuous
changes happen continuously in that the intervals can be arbitrarily further refined and
the length can be arbitrarily prolonged for the security requirements in long-lived
software systems.

In a nutshell, the situations that can change in the model for requirements include
generally entities and the relationships between them. In particular we consider

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 17/56

elementary types of changes, including the modification, the addition and the removal
of an element (such as an entity or of a relationship). An example of possible change is
the addition of a new actor (as the event that matches with the condition) that results in
the addition to the model of a new entity representing the actor and new relationships
such as the “wants” relationship to specify the goals the new actor wants to achieve or
a “provides” relationship from the actor to the resources and activities that it offers.

Figure 2. A meta-model for evolution of security re quirements

A more complex kind of situation change can be described by a composite change,
which is a transaction of elementary changes (or nested composites) that must happen
together or not at all. For example, the deletion of an actor A may require the deletion
of all the delegation relationships from A to another actor B, while finding for B
alternative actors A’ that can provide the same activities and resources delegated to A,
otherwise the incomplete change may violate the intention of B. Therefore we record
such complicated changes as a transformation that preserve the satisfaction of certain
high-level requirements.

A natural way is to represent the change as a transition rule between two situations,
denoted respectively as before and after situations (see Figure 2). Intuitively, the
before/after situation represents the elements in the model the change has occurred at
a given time before/after an adaptation has been applied. The outcome of changes is
monitored by evolution rules to decide whether an adaptation action needs to be taken.
If yes, the change will trigger the application of a general evolution rule in a concrete
place in the model, possibly causing additional changes.

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 18/56

Figure 3. A continuous process to maintain the requ irements

The envisioned workflow of maintaining design and requirement models through
evolution requires the continuous adaptation of the models to react to changes.
Changes in external factors – changed requirements, new threats, and revised design
decisions – can be introduced into the model by engineers (or automatic monitoring in
some cases); this model change, however, may violate constraints and requirements,
cause inconsistencies. Therefore reactions are required to handle the effects of
change. While most reactions will remain responsibilities of engineers, evolution rules
can be defined to automatically adapt and transform the model in some cases. Failing
that, rule-based automatic mechanisms are expected to be able to initiate the process
of adaptation in many cases, or at least indicate the problem to the engineers.

The applicability of automatic evolution rules is greatly enhanced by machine-
understandable, domain-specific refinement of the general requirement modeling
concepts appearing in this deliverable. Therefore SecureChange provides a general
meta-model for security-related concepts, and suggests domain-specific specialisation
where applicable to facilitate tool support and automated reaction mechanisms.

Figure 3 shows how the evolution rules are used in a feedback loop to deal with the
evolution of security requirements. Changes of situation are initially caused by external
factors (environment context) of the system. These changes can trigger evolution rules
that perform automatic adaptation, or otherwise result in a manual change process. As
a result of such an adaptation action, a new situation arises that one must iteratively
reevaluate for automatic rule execution or manual intervention. Or else, if the new
change does not trigger any further actions, or there is no further change, the control
feedback loop can exit.

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 19/56

4 Argumentation of security requirements

As we discussed in the introduction, the satisfaction of security requirements in the
general form of the entailment W, S ├ R needs to be argued, as security requirements
are often a collection of claims whose satisfaction depends on the trust assumptions
(facts and domain knowledge), as well as any rebuttals and mitigations.

Our argumentation is based on the informal Toulmin structures in the 1950’s [2].
However, to consider it in the formal settings, we have simplified the conceptual
models (see Figure 4). The most important concepts in arguments are defined as
follows: A claim is a (probably grounded) predicate whose truth value will be
established by an argument. An argument contains one and only one claim. It also
contains facts and rules in domain knowledge. Facts are grounded predicates --
something that are either true or false where terms in these predicate must be
constant. Domain Knowledge is a set of ungrounded predicates that can be evaluated
to true or false once the values of all terms in the predicates are known.

The predicates referred by the domain knowledge do not have to be known facts.
However, the predicates that appear in the domain knowledge are all relevant
(necessary) to the argument for the truth value of the claim to remove any redundancy.

Figure 4. Meta-model for arguing the satisfaction o f security requirements

Every argument also has a timestamp, which indicates the iteration during the
argumentation process. For a given argument, an initial iteration is to establish the truth
of its associated claim. The argument may require sub-arguments to establish the truth
of certain facts or intermediate predicates. These sub-arguments are also arguments,
but they are meant to provide supporting evidence (as sub-claims). On the other hand,
rebuttals are a special kind of arguments whose purposes are to establish the falsity of
their associate claims or make them indeterminable. Similarly, mitigations are another
special kind of arguments following the iteration of rebuttals in order to reestablish the
truth value of the associated claims. Both rebuttal and mitigation arguments do not
need to contain all the facts and rules. Only incremented facts or rules need to be kept
in such follow-on arguments because they are always applied after previous
arguments. Of course, the same reasoning mechanism should be used consistently for
all arguments.

Eliminato: Error! Reference
source not found.)

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 20/56

Claims can be very general. For example, “The Arrival Management (AMAN) system
from the air traffic management domain is safe and secure” can easily invite different
opinions. To support such claims, one need to use the facts or domain knowledge in
the field; to refute the supportive evidence for the claims, one can draw on additional
(often non-monotonic or negative) facts and domain knowledge to form claim rebuttals.

Here is one example of iterative development of an argument for the security in the
AMAN case study. Typically such development is in the form of a dialogue. The first
round of an informal argument might be:

Initial claim:

• The AMAN system is secure (C1).

Initial facts:

• The AMAN system is controlled by trustable experts (F1).

• The experts can manage the separation of distance in the runways by
monitoring and active communication of the flight trajectories (F2).

Initial domain knowledge :
• When two flights close within a dangerous distance, the AMAN system will

present a warning to highlight the flights on the trajectories. (DK1)
Initial Rebuttals:

• The experts can have malicious intent due to social and psychological reasons
(R1 on F1).

• The ADS-B system [2] may report a wrong distance due to mechanical failures
or extreme weather conditions (R2 on DK1).

Second round, one checks the R1 as a claim. Here is the supporting evidence for R1:

• All experts have been through clearance to minimise the risk of being malicious
F3=R1.1).

• The controlled trajectories are viewed by a group of experts who can all see
what’s displayed on the screens to prevent a single person from providing
wrong instructions (F4=R1.2).

Such argumentation can go on and on until all the facts and domain knowledge are
refined so that all rebuttals of the root claim are not satisfiable. In other words, a
satisfaction claim is justified as long as all the facts and domain knowledge are true
(e.g., trust assumptions in arguing security requirements) and all the rebuttals are
false. A formal treatment of argumentation using non-monotonic proposition logic can
be found in [11]. As one can see, the result of such argumentations would inevitably
contribute to changes in the situations of security requirements.

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 21/56

5 An example of requirements evolution
modeling

In this section we show how we can represent the evolution of requirements that
characterize the ATM case study by instantiating the meta-model presented in
Sections 3 and 4. Some of these arise from the change of domain properties which are
not controlled by the system designers, while others arise from the change of optative
properties or functional and security requirements.

In this example, we show how functional and security requirements of the actual ATM
systems change due to the introduction of the AMAN queue management tool that
supports ATCOs.

Figure 5. The “before” situation

Figure 5 represents the requirement model before the introduction of the AMAN. The
main actors are the Sector Team at the destination airport composed by the Planning
and the Tactical Controller, the CWP, and the dedicated communication lines
(telephone, radio communications). The flight arrival management operations are
performed by the Sector Team (Tactical and Planning Controllers) that has to compute
the arrival sequence for the flights and give clearances for landing to the pilots flying in
their sector on the basis of the information displayed by the CWP such air traffic, radar
data, monitor displaying inbound/outbound traffic planned for the sector, telephone
switchboards, airlines and airport operators preferences or priorities about arrival
runways. The communication between the different ATM actors takes place over
dedicated and secure communications lines. For example, for communication between
the Sector Team and the pilots specific radio frequencies are used.

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 22/56

In this scenario, the security requirements are associated with the CWP and the
Communication Lines :

• The CWP shall provide an authentication mechanism to verify users identity

• The Communication Lines shall provide secure and reliable communication
among ATM actors

As affect of the introduction of AMAN, ATM systems go under architectural,
organizational, and operational changes. At architectural level, the AMAN supports the
Sector Team by providing sequencing and metering capabilities for a runway, airport or
constraint point, the creation of an arrival sequence using ‘ad hoc’ criteria, the
management and modification of the proposed sequence, the support of runway
allocation at airports with multiple runway configurations, and the generation of
advisories for example on the time to lose or gain, or on the aircraft speed. At the
organizational level, the introduction of the AMAN requires the introduction of a new
type of ATCO, called Sequence Manager, who will monitor and modify the sequences
generated by the AMAN and will provide information and updates to the Sector Team.
At the operational level, on one side the AMAN interacts with the FDP, CNS, and
Meteo services to collect the Airport Operators priorities for runaways usage the
Airlines priorities in terms of flight arrivals, the Meteo condition, and the aircraft position
that it uses to compute an ad hoc arrival sequence or to generate advisories. On the
other side, the AMAN interacts with the Sequence Manager and the Sector Team
through their CWPs monitor. The Sequence Manager can check the arrival sequence
and the advisories generated by the AMAN, and if necessary can modify them, while
the Sector Team ATCOs can only view them. Based on the information provided by the
AMAN, the Sector Team gives clearances to the pilots flying in its sector. The
communication between the different ATM actors does not take place over secure and
dedicates lines: the actors are interconnected by the SWIM, an IP based data transport
network that will replace the current point to point data systems.

In this scenario we have new security requirements that need to be satisfied (see
Figure 6):

• The CNS systems shall check the authenticity of aircraft tracks

• The AMAN shall provide selective access control for the different ATM actors
(Sequence Manager, ATCOs,..)

• The AMAN shall disclose to another actor only the aircraft information
necessary for the actor to perform its task (need to know principle)

• The AMAN shall check that the information coming from Meteo Services,
Radars, Airlines and Airport Operators has not been altered

• The SWIM shall require authentication sessions for users based on digitally
signed certificates

• The SWIM shall be able to detect fake stakeholders and trace them in a
blacklist

• The SWIM shall ensure data integrity and confidentiality.

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 23/56

Figure 6. The “after” situation

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 24/56

6 Specifying rules for evolutionary changes

Having the capability to express the Before/After situations in security requirements as
models, in this section we discuss the role of automated evolution rules in a workflow
supporting model transformation.

6.1 Goals for the evolution rules
The framework for specifying evolutions rules for the security-related aspects of the
engineering model should:

• support complex structural requirements that are difficult and error-prone to
oversee manually;

• allow the capturing of change events in terms of similarly complex structural
relations;

• provide automated alerting of criteria that cease to be satisfied;

• allow flexible adaptation to security requirements of domains, e.g. ATM;

• once adapted to a domain, allow flexible refinement for a concrete application in
context of actual system design artifacts;

• enable the flexible, scenario-specific definition of the aforementioned complex
criteria;

• enable the engineer to define automated reactions to change events where
applicable;

• enable the reactions for automatic reconfiguration of the design model;
automatic application of security-related design decisions; and automatic
reusing of design artifacts (e.g. argumentations), to be filled later by the
engineers, that are required for a system evolution to be admissible from a
security viewpoint.

6.2 Using model transformations for evolution
Automated model transformations play an important role in modern model-driven
system engineering in order to query, derive and manipulate large, industrial models. .

For instance, meta-modeling-based development architectures, including OMG’s
Model Driven Architecture (MDA), highly rely on transformations within and between
different models and languages. The important role of model transformation (MT)
languages and tools for the overall success of model-driven system development has
been revealed in many surveys and papers during the recent years [5][6][10].
Approaches to model transformation and various solutions addressing the encountered
challenges are continuously being explored.

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 25/56

6.2.1 Incremental transformations
Transformation of evolving models is a challenging task with high practical relevance,
arising in a wide range of circumstances. As a typical example, tool integration requires
that a complex relationship be established and maintained between models conforming
to different domains and tools. In the context of SecureChange, synchronization
involving requirement and design models poses a transformation problem.

Model synchronization tasks can be formulated as the obligation to keep a model of a
source language and a model of a target language consistently synchronized while the
underlying source model (and sometimes the target also) is evolving. Model
synchronization is frequently captured by transformation rules [2]. When the
transformation is executed, trace signatures are also generated to establish logical
correspondence between source and target models.

Traditionally, model transformation tools support the batch execution of transformation
rules, which means that input is always processed “as a whole”, and output is always
regenerated completely. However, in case of large, complex, and continuously evolving
models, batch transformations may not be feasible. To address the issue of model
evolution, incremental model transformations (i) update existing target models based
on changes in the source models [16], and (ii) minimize the parts of the source model
that need to be reexamined by a transformation when the source model is changed [3].
In the terminology of [6], these aspects are called target and source incrementality.
These aspects are called target and source incrementality.“ , respectively. It would also
be beneficial if the transformation system could autonomously react to the evolution of
the source model; this requires a notion of events and reactions.

The benefits of source and target incrementality can be harnessed in various
transformation scenarios, most importantly tool integration. Further applications are
found in the context of domain-specific modeling such as (i) model execution
(simulation), where incremental transformation rules may be used to execute the
dynamics semantics of a domain-specific language; (ii) constraint management, where
incremental transformations are used to check and enforce the validity of a complex
constraint; (iii) event-driven code generation, where the textual representation of
abstract models may be incrementally maintained as the source model changes.

6.2.1.1 Source incrementality

The aim to execute transformations without re-evaluating unchanged parts of the
evolving source model is called source incrementality.

Since rules are defined in terms of patterns and actions, pattern matching plays a key
role in the execution of model transformations. The goal of pattern matching is to find
the occurrences of a pattern, which imposes structural as well as type constraints on
model elements. Source incrementality can be achieved by employing incremental
pattern matching techniques; for example, the RETE [9] incremental algorithm was
used in [3].

The central idea of incremental pattern matching is that occurrences of a pattern are
readily available at any time, and they are incrementally updated whenever changes
are made. As pattern occurrences are stored, they can be retrieved in constant time –
excluding the linear cost induced by the size of the result set itself –, making pattern

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 26/56

matching a very efficient process. There are two important drawbacks; one of them is
the increased memory consumption due to the stored occurrence sets. Additionally,
these stored result sets have to be continuously maintained whenever the model is
changed, causing an overhead on model manipulation. Nevertheless, benchmarks [4]
and practice have shown that incremental pattern matching can improve performance
or scalability by up to several orders of magnitude in certain scenarios. This is the
benefit of source incrementality: eliminating the need to continuously re-evaluate the
source model.

6.2.1.2 Live transformations

To achieve target incrementality, an incremental transformation approach creates
“change sets” which are merged with the existing target model instance. In order to
efficiently calculate which source element may trigger changes (source incrementality),
the transformation context has to be maintained which describes the execution state of
the model transformation system (e.g. variable values, partial matches). Depending on
whether this is possible or not, there are two main approaches to incremental
transformations: re-transformation and live transformation.

Systems employing re-transformations lack the capability to maintain the
transformation context over multiple execution runs, thus the entire transformation has
to be re-run on the modified source models. This involves the computation of which
model elements are involved in the change, and which elements should be left
untouched by the transformation. Thus, the feasibility of this approach depends heavily
on the trace information.

In contrast, live transformations maintain the transformation context continuously so
that the changes to source models can be instantly mapped to changes in target
models. Live transformations are persistent and go through phases of execution
whenever a model change occurs. Similarly to re-transformations, the information
contained in trace signatures is used in calculating the source elements that require re-
transformation. However, as the execution state is available in the transformation
context, this recomputation can be far more efficient.

Ráth et al [16] introduced an approach where a model change is captured by a change
in the match set of a graph pattern. The match set is defined by the subset of model
elements satisfying structural and type constraints described by the pattern. Changes
in the match set can be tracked using incremental pattern matching. A model change is
detected if the match set is expanded by a new match or a previously existing match is
lost. Since a graph pattern may contain multiple elements, a change affecting any one
of them may result in a change in the match set. Thus complex changes beyond simple
atomic operations can be easily detected. The execution context of the live
transformation, as required by target incrementality, is represented in the form of
pattern variables, and continuously maintained by the incremental pattern matching
engine after each atomic model manipulation operation. As a result, the computation
required to initialize and execute the incremental transformation sequence after a
change is very efficient, since pattern matching, the most cost-intensive phase of the
transformation, is executed instantly.

With the help of incremental transformation rules, also called triggers, a broad range of
transformations can be specified in a live way. A trigger is defined in the form of a
graph transformation rule: the precondition of its activation is defined in the form of a

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 27/56

graph pattern, while the reaction is formulated by arbitrary (declarative or imperative)
transformation steps.

6.2.1.3 Target incrementality

Traceability is a property of transformations, stating that some kind of mapping is
available between the source and target models. Traceable transformations has
various advantages: for example, target elements can be traced back to the reason of
their existence (e.g. source elements) to justify or explain them; additionally, the
transformation of some individual elements can depend on already established source-
target mappings, which is useful for e.g. transforming containment hierarchies.
Traceability is also required to achieve target incrementality: if local changes of the
source model only affect corresponding parts of the target model, the transformation
execution can focus on the affected part and leave other parts of the target intact, with
the help of a correspondence relationship.

A straightforward way to preserve trace information is internal traceability, when target
elements have a direct reference to source elements. This is prevalent in simpler
frameworks that are only capable of one-to-one correspondence between source and
target elements, where each target element is traced back to exactly one source
element. In more complex transformation tasks, however, each rule application may
have to be traced back to potentially several source and target elements, and may
justify potentially several target elements simultaneously. Therefore more recent
approaches have opted for external traceability, when the elements of the source and
target models are interrelated via a separate mapping model. This mapping model
(also known as trace model, reference model or correspondence model) conforms to a
separate trace meta-model, that references the source and target meta-models.

In incremental transformations, separate trace models have an additional benefit: they
preserve the now-obsolete mapping even after the source or target has been changed,
which can serve as an important input for transformation rules. For example, a trigger
can be defined to detect the deletion of a source element that has been mapped to a
target element, by discovering that there is a trace element connected to a target
element, but not a source element; the appropriate action would be to delete the target
element and the trace relationship as well. As an illustration, Figure 7 depicts a
reference element connecting a source and a target element, as well as two rules: the
first one creates the reference and target elements if they do not exist; the second one
deletes them if the source does not exist. See [17] for a detailed case study of
traceability in incremental transformation in a DSM context.

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 28/56

Figure 7. Example rules for target incrementality t hrough traceability

6.2.2 Event – Condition – Action semantics
Live transformation and change-driven rules can be described using the mathematical
formalism of Event-Condition-Action. The literature mentions various definitions for this
concept; a relatively rich one is found in [1]. Basically, an Event captures an
elementary transition of the system to a different (not necessarily internally consistent)
state, identifying the change that happened between the two states. An Action is a list
of operations that constitute the reaction to that event.

The strength of the formalism is that the reaction can depend on the context where the
event happened, as defined by the Condition part. A Condition commonly involves the
assertion of relationships between the elements affected by the change and unaffected
contextual elements, to identify the position where the change occurred in the model.
The Condition may also assert entities and relationships in the unaffected part of the
model so as to provide a filter for certain overall conditions of the model. Least
commonly, the Condition can also include assertion of relationships between affected
elements to restrict the shape of the change.

Condition, contrary to its name, does not have to be a simple decision whether the
actions can be applied in reaction to the change. In a more powerful formalism, the
Condition may select various sets of parameters to execute the Action with. This can
be achieved e.g. if the Condition is a logic formula with free variables, the Event
provides the value of some of these variables, and the Action is executed once for
every possible substitution of the rest of the free variables, using the substitution
values as parameters.

Event and Condition both serve as a way of monitoring the evolution of a system. The
key difference is that Event captures a dynamic change in the system, while Condition
identifies the static context where this change happened.

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 29/56

6.2.3 Change-driven transformations
A separate approach to specify model transformations has been introduced in [18].
Depending on the setup, change-driven transformations can fulfill a number of goals.
The approach can be viewed as a generalization of live transformation, a formalism to
bridge the conceptual gap between batch and incremental transformation, or simply a
new and intuitive way to describe reactions to changes. It is also suitable for
transformation scenarios where the target model is not directly accessed or not
completely materialized, but accessible only through element identifiers and a
query/manipulation interface. This allows the transformation to manipulate remotely
stored target models, large models that do not fit in memory, or an internal runtime
representation of an application.

A key concept of the approach is capturing and explicitly representing change
operations, for example as model elements. The elements that correspond to future
changes are change commands, while the ones that record already executed changes
constitute a change history model. The latter kind can be automatically generated on-
the-fly during the execution of model manipulation. Apart from basic change operations
(creation, deletion, moving, value setting, etc.), user-defined domain-specific macro
change types are also allowed.

Change driven transformations are specified by a set of transformation rules that react
to changes of the model by matching a single change operation and additional model
elements, and create change commands to manipulate the target model. The created
change command may be executed at a later time, even at a remote location. Thus
rules are incremental and evaluated asynchronously to the update of the target model,
and optionally asynchronously to the change of the source model that caused the
change propagation.

[18] also presents an example workflow. Change history is derived on-the-fly and
automatically after the source model is updated, regardless whether the model
manipulation was initiated by another (not necessarily change-driven) transformation,
or by user interaction. Change history is asynchronously processed by transformation
rules that should depend on the change history element, and potentially an extended
condition involving the source model, but not the target. Instead of directly manipulating
the target model, the transformation rules only create change commands to express
the required modifications, thus allowing for deferred execution, remote processing, or
piping through the runtime manipulation API of an application.

The workflow is depicted on Figure 8. MA and MA’ are the previous and the current state
of the source model A, and MB, MB’ are the two states of the target model B before and
after the application of the change commands. CHMA is the change history model
derived by observing the change of A, and CCB represents the change commands that
affect the target model. Transformation and processing is indicated by circles.

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 30/56

Figure 8. Change-driven workflow

6.3 Meta-model for evolution rules
Evolution rules control how one model or an interconnected set of models follow the
evolution of a source model in order to maintain security and other objectives (Figure
9). Evolution rules are defined in conformance with the Event – Condition – Action
semantics to specify the desired reaction to changes performed on the model. The
Event part of the evolution rule is matched against every change executed on the
model. The Condition may restrict the cases where the rule is applicable, and may
select multiple ways to apply it. The Action part manipulates the model by issuing
change commands itself; these changes will eventually be processed like any other
change operation, and reacted upon by evolution rules.

Various kinds of change commands can be issued. The most basic change kinds are
the creation of entities and relationships of a specific type, deleting them and modifying
their values. This list of change kinds is extensible to incorporate a more refined notion
of changes, or domain specific change macros.

An actual change command has a change kind and refers to actual entities or
relationships as affected elements. The definition of an evolution rule, however, refers
to rule variables as affected elements instead. The Event part match changes against
one or more change queries. Each of them captures the change in terms of the
appearance or disappearance of element configurations (patterns). An attribute
contains the sign of the change query. The appearing/disappearing element
configuration of the change query is described by a set of predicates formed on rule
variables. The Condition part describes the context of the event, likewise with
predicates on variables. Some of these variables are typically used by the change
queries as well. The two most common predicate types are entity predicates
(constraining a variable to a given entity type) and relation predicates (constraining a
variable to a given relation type, connecting a source variable and a target variable).
The Action part contains a sequence of reaction templates that are parametrized by
rule variables appearing in the Event, Condition or even preceding reaction templates,

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 31/56

and can be instantiated into applicable commands by substituting the parameter
variables. The most important type of reaction template is the change template which
can be instantiated into a change command of a certain change kind. The evolution
rule contains all variables mentioned by the Event or the Condition, a subset of which
is accessed by the Action.

Change queries are intended to match actual change events that cause the
appearance or disappearance of the appropriate patterns, and substitute the variables
to the affected elements. After that, the Condition is evaluated to decide whether the
rule can be applied for this particular change, and to substitute remaining free
variables. The Action is applied for each possible substitution; this means instantiating
all reaction templates with the substituted values of variables. In case of change
templates, the resulting change commands can be submitted for execution and
evolution rule application.

Figure 9. Meta-model for evolution rules

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 32/56

6.4 Examples for evolution rules

6.4.1 Problem description
In an evolving requirements model, new actors may be introduced, delegation and trust
relationships may be changed, all raising security concerns. An example rule is
designed to intervene in situations when an actor delegates some responsibility to
another actor, but does not trust the other one with the same object. See Figure 10 for
an illustration of this undesired pattern. The appropriate reaction can range from
logging the event, raising a warning or initiating an argumentation that will be finished
by security engineers, to automatic intervention like creating the missing trust
relationship, depending on policy. To illustrate the capabilities of the evolution rule
formalism, we present three solutions to this problem.

Figure 10. The undesired pattern: untrusted delegat ion

6.4.2 Solution 1: one rule per elementary change
The first solution would be to create several evolution rules, one for each possible
elementary change that can complete the pattern and make an intervention necessary.
In this case, two kinds of elementary changes can trigger the rule: the detection of a
newly added “delegation” relationship between two actors (and the dependum), or the
deletion of an actor-actor trust (over a dependum).

Both changes can be captured by the Event part of a separate evolution rule
(appearance event in the former case, disappearance in the latter). The condition part
is required to determine whether the change actually completes the pattern: when a
delegation appears, the non-existence of a trust with the same dependum will have to
be checked; when a trust disappears, the existence of the delegation with the same
dependum will have to be checked. The Action creates an argument prototype,
connected to the violated security goal, to discuss the problem. Engineers will have to
manually finish the argument with domain-specific knowledge, or fix the problem.
Additionally, the Action contains a simple logging statement; observe how the two
different cases can be handled differently. The following pseudocode listing describes
these two evolution rules; syntax is not final.
evolution ruleevolution ruleevolution ruleevolution rule UntrustedDelegation1 {

 variablesvariablesvariablesvariables = (Act1, Act2, Del, DD, Tru, TD, Obj, Arg, AP);

 eventeventeventevent = = = = appearappearappearappear {

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 33/56

 entityentityentityentity Actor(Act1);

 relationrelationrelationrelation Actor.delegates(Act1-Del�Act2);

 entityentityentityentity Actor(Act2);

 Actor.delegates.dependum(Del—DD->Obj);

 entityentityentityentity Object(Obj);

 }

 conditionconditionconditioncondition {

 nononono (Tru, TD) such that {such that {such that {such that {

 relationrelationrelationrelation Actor.trusts(Act1-Tru�Act2);

 relationrelationrelationrelation Actor.trusts.dependum(Tru—TD->Obj);

 }

 }

 actionactionactionaction {

 loglogloglog “Delegation created without supporting trust: $Act1-$Obj-$Act2”;

 create ecreate ecreate ecreate entityntityntityntity Argumentation(Arg);

 create rcreate rcreate rcreate relationelationelationelation Argumentation.problem(Arg—AP->Del);

 }

}

evolution ruleevolution ruleevolution ruleevolution rule UntrustedDelegation2 {

 variablesvariablesvariablesvariables = (Act1, Act2, Del, DD, Tru, TD, Obj, Arg, AP);

 eventeventeventevent = = = = disappeardisappeardisappeardisappear {

 entityentityentityentity Actor(Act1);

 relationrelationrelationrelation Actor.trusts(Act1-Tru�Act2);

 entityentityentityentity Actor(Act2);

 relationrelationrelationrelation Actor.trusts.dependum(Tru—TD->Obj);

 entityentityentityentity Object(Obj);

 }

 conditionconditionconditioncondition {

 relationrelationrelationrelation Actor.delegates(Act1-Del�Act2);

 relationrelationrelationrelation Actor.delegates.dependum(Del—DD->Obj);

 }

 actionactionactionaction {

 loglogloglog “Removal of trust threatens delegation: $Act1-$Obj-$Act2”;

 create ecreate ecreate ecreate entityntityntityntity Argumentation(Arg);

 create rcreate rcreate rcreate relationelationelationelation Argumentation.problem(Arg—AP->Del);

 }

}

6.4.3 Solution 2: single coarse-grained rule
The change query formalism introduced in this chapter allows the detection of changes
that are defined by multiple predicates. This results in the capability of change queries

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 34/56

to observe the appearance (or disappearance) of a complex pattern, regardless what
the last elementary change was that completed the pattern.

In this case, the entire undesirable pattern (see Figure 10) can be captured in an
appearance event of a single evolution rule; whenever the undesired pattern appears,
the evolution rule will fire, independently of the order of operations that eventually
resulted in the appearance of the pattern. This enables us to formulate the solution
much more concisely; in this simple example, even the Condition part could be
discarded.
evolution ruleevolution ruleevolution ruleevolution rule UntrustedDelegation {

 variablesvariablesvariablesvariables = (Act1, Act2, Del, DD, Tru, TD, Obj, Arg, AP);

 eventeventeventevent = = = = appearappearappearappear {

 entityentityentityentity Actor(Act1);

 relationrelationrelationrelation Actor.delegates(Act1-Del�Act2);

 entityentityentityentity Actor(Act2);

 Actor.delegates.dependum(Del—DD->Obj);

 entityentityentityentity Object(Obj);

 nononono (Tru, TD) such that such that such that such that {{{{

 relationrelationrelationrelation Actor.trusts(Act1-Tru�Act2);

 relationrelationrelationrelation Actor.trusts.dependum(Tru—TD->Obj);

 }

 }

 conditionconditionconditioncondition {}

 actionactionactionaction {

 loglogloglog “Untrusted delegation: $Act1-$Obj-$Act2”;

 create ecreate ecreate ecreate entityntityntityntity Argumentation(Arg);

 create rcreate rcreate rcreate relationelationelationelation Argumentation.problem(Arg—AP->Del);

 }

}

This kind of concise solution is much quicker to develop and understand. Development
also becomes less error-prone, as the rule designer does not have to manually take
care of all possible elementary changes that can result in the appearance of the
complex pattern; the previous solution would have been insufficient if the rule
UntrustedDelegation2 had been accidentally omitted. The disadvantage is that the
same Action part is executed regardless of the last elementary change that triggered
the rule; if some cases do require special action, than more evolution rules should be
used with an event granularity that is just enough to distinguish the relevant cases.

6.4.4 Solution 3: automatic problem correction
Apart from logging the detection of the pattern and reusing an argumentation, evolution
rules can also correct problems present in the model. The difficulty of this approach is
that often there is more than one way to remedy an issue, and the decision is hard to
automate. For instance, the problem in this example can be solved by adding a missing
trust relationship; or by removing the delegation (and probably implementing something

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 35/56

else in its place). Both are valid ways to handle the issue, but engineers should select
manually which one should be applied in each concrete case. To achieve this, we
introduce two alternate evolution rules that implement these two reactions. Together
with the rule UntrustedDelegation introduced in Section 6.4.2 they provide three
options that are automatically offered to the engineers to choose from.

Note that the three rules can reuse each other’s Event parts for more concise
specification; once again, syntax is not final.
evolution ruleevolution ruleevolution ruleevolution rule UntrustedDelegation_AddTrust {

 variablesvariablesvariablesvariables = (Act1, Act2, Del, DD, Tru, TD, Obj);

 event =event =event =event = UntrustedDelegation.event

 conditionconditionconditioncondition {}

 actionactionactionaction {

 loglogloglog “Resolving untrusted delegation ($Act1-$Obj-$Act2) by adding
missing trust link”;

 create relationcreate relationcreate relationcreate relation Actor.trusts(Act1—Tru->Act2);

 create relationcreate relationcreate relationcreate relation Actor.trusts.dependum(Tru—TD->Obj);

 }

}

evolution ruleevolution ruleevolution ruleevolution rule UntrustedDelegation_RemoveDelegation {

 variablesvariablesvariablesvariables = (Act1, Act2, Del, DD, Tru, TD, Obj);

 event =event =event =event = UntrustedDelegation.event

 conditionconditionconditioncondition {}

 actionactionactionaction {

 loglogloglog “Removing untrusted delegation: ($Act1-$Obj-$Act2)”;

 delete relationdelete relationdelete relationdelete relation DD;

 delete relationdelete relationdelete relationdelete relation Del;

 }

}

Where applicable, evolution rules can directly manipulate the model to automate the
solution of common problems. Some of the change patterns introduced in D2.1 can be
considered as possible candidates for being automated with evolution rules.

6.4.5 Example rule application
The given solutions can be demonstrated by applying them on the example models
from Section 4 which represent the before/after situations in the ATM domain.
Observing the After situation (see Figure 6) more closely, one can notice that contrary
to the old communication system, the new SWIM system is not yet trusted by actors
such as CWP and CNS. This may be a security issue, as Secure Data Exchange is
now delegated to SWIM, which obviously requires trust. Fortunately, the example
evolution rule presented in Section 6.4 can be used to automatically detect untrusted
delegations. For example, if we use the three rules introduced as Solution 2 (see
Section 6.4.3) and Solution 3 (see Section 6.4.4), they will be triggered for several
individual matches by this example evolution. The rule matches will map the rule

Eliminato: Error! Reference
source not found.

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 36/56

variables to actual substitutions that experienced the Event and satisfy the Condition.
Act2 will be mapped to SWIM, Obj to Secure Data Exchange, and Act1 will be mapped
to CNS, AMAN, CWP, Sector Team or Sequence Manager in the various concrete
matches. Engineers will be able to choose from three options for each individual
match: to fill in the missing trust link (this is the likely solution in our case), to abolish
the delegation, or to build an argumentation explaining why there is no real problem.

6.4.6 Further discussions

None of the above rules deal with the disappearance of the undesired pattern.
Depending on policy, additional rules may have to be defined to react to security
problems being solved, as the actions of the other evolution rule (e.g. placing a
warning marker or creating an argumentation) may have to be undone or
compensated.

The example presented in this section shows how the goals in Section 6.1 can be
satisfied using the proposed formalism for evolution rules:

• the untrusted delegation was captured as a complex structural property

• a change event detecting the change of this complex property was defined

• the formalism is general enough to be refinable for domains or scenarios

• the rules can take appropriate domain-specific actions

• these reactions include user interaction (logging in this example) and the
modification of a model (creating the argumentation or trust, removing the
delegation)

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 37/56

7 Security Requirement Analysis in Practice

In this section we present the Thales industrial method for security risk analysis, and
we show the analogies with our methodology for security requirements elicitation and
analysis. Thales method aims at supporting the analysis and assessment of security
risks for a system, and the specification of requirements for security measures to
address those risks.

7.1 The security risk analysis method: Principles
Our prospective security risk analysis method builds upon model-based engineering
methods and techniques. All activities of our method are organised around the building
and usage of models, that is formalised, precisely defined, interconnected and
integrated representations of the objects under study.

As represented in Figure 11 our proposed method relies on the development of a
modelling framework that combines in a synchronised way a set of models that
constitute separate viewpoints [15] over the engineering problem:

Figure 11. The security analysis method in Thales c ontext – big picture

• The System architecture model contains the architectural design of the system;
this model is developed within the mainstream engineering processes, along at
least two dimensions: the functional/logical architecture of the system
(functional capacities and data to be realised by the system) and the physical
/implementation architecture of the system (actual hardware and software
components that realise the functional capacities).

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 38/56

• The Business need model captures a representation of the business context for
the system: business process that is supported, underlying business
organisation, business objects, key performance indicators, strategic drivers,
etc.

• The Risk analysis model and security objectives model capture the results of
the security risk analysis method that is proposed in dedicated DSML
(presented in next section). These models include a representation of the
system architecture that is relevant to the needs of the security analyst, this
model is called context model. This model is traced back and maintained in
synchronisation with the system architecture model (see [12]). The security risk
analysis information is defined as annotations or related new concepts added
over the system architecture elements. The risk analysis model and security
objectives model may also be traced to elements of information defined in the
Business need model.

• The Requirement Database captures all kinds of systems requirements
(Security, Safety, Maintainability, Cost ...). Security requirements are derived
from security objectives model of dedicated DSML (see [13]). This mapping
enables to add security requirements with other kind of requirement addressed
for a complex system. Requirement Database is traced back and maintained in
synchronisation with the system architecture model and Business need model.

The System architecture model and the Business need model are part of architecture
modeling framework that we are developing to address service-oriented types of large-
scale enterprise integration systems or systems of systems. In the Thales context, the
official database of Requirement Management is Rational DOORS with the T-REK
add-ons [19].

7.2 DOORS T-REK
Rational DOORS [19] (Dynamic Object Oriented Requirements System) provides:

• A requirements Database that allows all stakeholders to participate in the
requirements process

• The ability to manage changing requirements with RCM Tools (Requirement
Change Management)

• Powerful life cycle traceability to help teams align their efforts with the business
needs and measure the impact that changes will have on everything from
business goals to development

• Links requirements to design items, test plans, test cases and other
requirements for easy and powerful traceability

• Automatic generation of traceability matrix.

• Automatic document generation of DOORS module into MS WORD format
(.doc).

As suggested by Figure 12, a DOORS project is composed by two kinds of modules:

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 39/56

• Formal Modules gather requirements information and is used for Requirement
Specification. One Requirement is considered as one object which contains a
set of attributes (standard attributes are Object Identifier, Object Heading and
Object Text). It’s possible to filter some attributes in views.

• Link Modules gather links information. Links module contains a set of Linksets
which represent link information between two Formal Modules.

Figure 12. DOORS project structure

T-REK (Thales Requirement Engineering Kit) is an over-layer of DOORS which
enables to distinguish different kinds of Formal Modules and Link Modules. T-REK
offers a Relationship Manager to represent a project structure and relations between
different formal modules: we call it a Datamodel. In a simplified Datamodel as shown
by Figure 13, we distinguish:

• Requirement Module, which represents Requirement Specification Document
(it’s possible to distinguish User Requirement Specification and System
Requirement Specification). The link between this kind of module corresponds
to “satisfies” link.

• Integration, Validation, Verification (IVV) Module, which gathers integration and
tests campaign information (e.g. Test Result, Expected Test Method ...). IVV
modules are linked with Requirement module by a “verifies” link.

• Product Breakdown Structure (PBS) Module, which contains all subsystems or
components (depending on project granularity) and all related information (e.g
kind of component software, hardware ...). Components/Subsystems are
represented by a DOORS object. Requirements modules are linked with PBS
modules by a “is allocated to” link.

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 40/56

Figure 13. Simplified Datamodel in T-REK

Risk are not represented in Standard T-REK Datamodel, this is why we plan to connect
our DSML based on Risk analysis with DOORS T-REK.

7.3 Application in Thales Requirement Workbench

7.3.1 Thales Security DSML

This deliverable cannot be the place for a detailed presentation of the conceptual
model and syntax of DSML. We are providing below representative extracts. More
details are provided in [15]. The core part of the conceptual model1 is represented in
Figure 14.

The system under analysis is considered to hold targets and essential elements.
Targets are physical elements subject to risk.

Essential elements are usually more logical, functional elements: data and functions (or
services, or capabilities depending on context) that are essential to the business stakes
of the company, and therefore subject to security needs. Essential elements depend on
targets for their implementation.

Requirements and Objectives are allocated to Essential Element and/or Target. To
ensure risk traceability, Objectives and Requirements must cover Risk(s). Objective
must be more general than Requirement, and to preserve traceability between those
concepts, we consider a bidirectional association named “satisfies” between them.

1 For readability sake, it is represented in the form of a conceptual model rather than a formal meta-model.

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 41/56

Figure 14. Conceptual model of Security Objectives and Requirements in

Security DSML

In current Security DSML, we distinguish three kinds of static models2 as shown by
Figure 15:

• The Requirement Model describes the specialization of Objectives into several
Requirements and links between those and the other elements of DSML (Risk,
Context).

• The Context Model describes System Architecture (Essential Elements and/or
Target), related constraints and links between those and the other elements of
DSML (Risk, Requirement).

• The Risk Model describes the risk characterization into threats, damages and
vulnerabilities and links between those and the other elements (Risk, Context).

2 The connectors between entities are not represented here for readability sake

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 42/56

Figure 15. Security DSML Static Model description

7.3.2 Mapping between DSML conceptual models and
the security requirements meta-model

Although slightly different terminology was used in Security DSML, we can find a clear
mapping between our more generic security requirements meta-models in the previous
sections. Using CamelCase for the DSML concepts, and lower case words for
concepts in our security requirements meta-model, the mapping can be set up as
follows:

• A Requirement is a requirement,

• An Objective is a security goal,

• An Essential Element is a specification in logical layer as Platform Independent
Model (messages, logical component)

• A Target is a specification in physical layer as Platform Specific Model
(communication channel, physical component). Target has vulnerability and is
threatened that may expose a Risk to the satisfaction of a security goal.

• The StaticModel is equivalent to a situation, which contains the
RequirementsModel corresponding to our security requirements in terms of
security goals; the ContextModel) corresponds to our domain properties which
further contain Constraints (domain assumptions) and System (logical and
physical specifications).

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 43/56

• The RiskModel corresponds to our validation model in the quantitative
perspective.

• Concepts such as Damage, Vulnerability, and Threat are the same, whereas
the Boolean in predicate logic may no longer be sufficient for the quantitative
risk analysis. Yet one can still reason about the security goal satisfaction using
thresholds.

7.3.3 From DSML to DOORS T-REK
Figure 16 shows how to realize the mapping between Thales Security DSML (or Other
DSML for Need Analysis) and DOORS T-REK, to do this we must consider a
Traceability relation between Security Requirement of Security DSML and DOORS
Requirements.

This relation enables to connect other kind of requirement (Safety, Maintainability, Cost
…) with Security Requirements expressed in DSML. Requirements are stored in a
common requirement Database (DOORS Database). This communication is realized
via a Model Bus (Bidirectional interface XML to DXL3) for Traceability needs between
DOORS and Security DSML.

Figure 16. Mapping between DSML and DOORS

This connection enables to represent risk defined in DSML into a requirement attribute
(Related Risk) and connect Related Threat and Vulnerability into a component
attribute. It’s so possible to represent risk into DOORS objects.

Figure 17 presents the extended conceptual meta-model including DOORS
connections. Two kinds of entities are mapped with DOORS: Requirements and Target
which are respectively represented by Requirement and Product Breakdown Structure
object in DOORS. To ensure traceability between DSML and DOORS, we add an
PUID (Product Unique IDentifier) attribute, PUID is the reference name of a DOORS
object.

3 DXL (DOORS Extended Language) is the native language of DOORS

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 44/56

Figure 17. Extended Conceptual model including DOOR S connections

Figure 18 depicts the properties view on Security Objective O6 (Identifiers should be
chosen so that they do not compromise user‘s privacy). Figure 19 presents the
requirement derived from security objective in DOORS.

Figure 18. Close view on the Security Objectives

Formattato: Tipo di carattere:

(Predefinito) Arial

Formattato: Tipo di carattere:
(Predefinito) Arial

Eliminato: Figure 18

Eliminato: Figure 19

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 45/56

Figure 19. Derived Requirements expressed in DOORS

The information of target can be consulted in the Properties View (Description,
constraints applied on it), as can be seen in Figure 20. This properties view of Target
is also defined in DOORS as shown by Figure 21.

Figure 20. Properties of the Database Server in DSM L

Figure 21. Database Server description in DOORS

Formattato: Tipo di carattere:
Arial

Formattato: Tipo di carattere:
Arial

Eliminato: Figure 20

Eliminato: Figure 21

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 46/56

7.4 Evolution Management
Changes are typically managed by a process, which is typically assisted by a change
management system. When security-related changes are considered, the process
must include the state of models with respect to validation and assessment of security
requirements. An orthogonal dimension is how to help human to manage the
dashboard status of the security of the overall achievement, during which errors are
allowed to be fixed and issues are allowed to be addressed. Resolution of such issues
may lead to addressing the target of a security risk at the design level, in other words,
the vulnerability of the specification can be associated with a particular risk factor in
satisfying certain security requirement.

7.4.1 ChangeLine Meta model
To represent traceability between changes and versioning of change, we add a further
Model: Change Model which is composed by several Change Lines. As shown by
Figure 22, a Change Line is considered as set of Changes and Change Transitions
to preserve links and grant consistency between successive changes which compose a
Change Line. These transitions enable to represent Before-after Perspective of
change.

Change is described by a Change Trigger (e.g. discover a fault or a new threat) which
activates a Change Request. It’s also possible to activate a Change Trigger by a
threshold defined in an Evolution Function which monitors the static model of the
system. Evolution functions enable to represent Continuous Perspective of change.

The maintenance perspective could be represented in this model by a particular
combination of continuous and before after perspective.

Figure 22. DSML Change Model conceptual model

Eliminato: Error! Reference
source not found.

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 47/56

7.4.2 ChangeRequest Meta-model
As shown by Figure 23, a Change Request contains a PUID to identify it and a status
which represent the state of Change request. After the activation of Change Request
by the Change Trigger, Change Request status is first defined in CCB (Configuration
Control Board). The configuration (or change) control board (CCB) is a meeting
between all actors of a development team (client, manager, quality, design, integration
…) to define the change request status (e.g. accepted, refused or postponed in the
next version of system). The detailed behavior of Requirement Change Request is
described in next section.

To instantiate a Change Request inside different models, we have specialized it in
three kinds:

• A Requirement Change Request modifies the Requirement Model
(Requirement, Objectives). It’s possible to map this kind of Change Request
with DOORS Change Request.

• A Context Change Request modifies the Context Model (e.g. system
architecture).

• A Risk Change Request modifies the Risk Model (Risk, Threat, Damage,
Vulnerability).

These three kinds of Change Request are dependants; a Requirement Change
Request could impact on Risk Change Request and Context Change Request and vice
versa. This is why we consider a traceability relation between those Change Requests.
This relation is described by an association called “impacts_on” (see Figure 23).

Figure 23. DSML Change Request Meta-model

Eliminato: Figure 23

Eliminato: Figure 23

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 48/56

7.4.2.1 Behavior of Change Request

For readability sake, Change Request Behavior is described by UML Statechart
Diagram. We present on the one hand the generic behavior of Change Request
including CCB status relations. On the second hand we describe the specific behavior
of Requirement Change Request.

7.4.2.2 General Behavior of Change Request

As suggested by Figure 23 and Figure 24, a Change Request (CR) starts after
Change Trigger activation (e.g. discover a fault, a new requirement …). Redactor of
Change Request must define the change and trace it with the impacted elements.
Change Request is as default in Pending State.

A CCB must be planned; it monitors the Change Request Status which could be in the
following states:

• Refused, CR is not relevant; it is not integrated in system. Change Request is
ended in this state.

• Postponed, CR is relevant but it’s not possible to integrate it in the current
version of the system. This CR is planned for the next version. CR returns in
Pending State during this system version.

• Accepted, CR is integrated in current version of system.

If CR is accepted, it will be In_process macro state. This macro state is specialized for
several DSML Models (Risk, Requirement or Context)..

CR is finish if and only if it’s closed in CCB with client agreement.

Figure 24. Generic Change Request Status Behavior

Eliminato: Figure 23

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 49/56

7.4.2.3 Specific Behavior of Requirement Change Req uest

Specific Requirement Change Request (RCR) Behavior starts after Accepted state
in generic behavior. As shown by Figure 25, Requirement Change Request Status is
represented by the sequence of following states:

• To_be_Managed, redactor of Requirement Change Request must take into
account impact of this change request with the other elements (Risk and
Context) and change them if necessary with new CR(s).

• In_progress, redactor must define changed requirement, designer must
models them, and developer must implement them.

• To_be_verified, integrator must take into account these changes in test
campaign (and change test scenario if necessary).

• Resolved, RCR Status will reach this state if and only if changed requirement
are verified in test campaign.

Figure 25. Requirement Change Request Status Behavi or

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 50/56

8 Conclusions

In summary, this report describes a methodology for addressing evolutionary security
requirements is based on three interleaving steps: modeling, analysis and design.
Models of evolutionary security requirements are elicited and generalized according to
three meta-models, in the modeling step. In the analysis step, the models of security
requirements are used to discover vulnerabilities. In the design step, requirement
model are used to construct a traceability mapping into security constraints of design
artifacts.

These meta-models are by no means an ultimate answer to the conceptual modeling
framework for evolution of security requirements. A better bet is to consider them as an
extensible framework in which new concepts and practices in the field of evolving
security requirements engineering can be represented.

We envisage that observations from our discussion may have important implications
for research in secure software evolution. The main implication concerns approaches
to secure change impact analysis. For example the observation that changing
requirements may lead to changing specifications could lead to a framework for
understanding the impact of changes and traceability of the changes through artifacts
in both requirements and specifications.

Similarly, such a change impact analysis framework could also be useful for analyzing
the impact that changes in context may have on requirements and specifications. The
change impact framework can be validated by doing more research on what the
interaction is between the changes in W, S ├ R. Related to this, is the issue of scoping
the impact of change on the system, when the system is large.

As a result, the meta-models presented will be considered together to shed some lights
on what is the more general representation of the meta-meta-model in order to
facilitate the classification of changes, the change impact analysis, the transformations
of the models, and the argumentation of satisfaction. Ultimately, security requirements
change patterns may be discovered, be documented and be reused from one case
study to another.

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 51/56

9 Acknowledgement

We thank Prof. Michael Jackson for his insightful comments on the meta-models being
developed earlier. We thank Prof. John Mylopoulos and colleagues at the UNITN for
the discussions on the requirements language in Section 4 and 5. We would also like
to thank Miss Stefanie Francois at the OU for discussions on the use of meta-model for
security argumentation.

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 52/56

References

[1] J. Alferes, F. Banti, és A. Brogi: “An Event-Condition-Action Logic Programming
Language”. Lecture Notes in Computer Science 4160, pp. 29-42, 2006.

[2] Becker, S.M., Haase, T., Westfechtel, B.: “Model-based a-posteriori integration of
engineering tools for incremental development processes”. Journal of Software and
Systems Modeling 4(2):123-140, 2004.

[3] Gábor Bergmann, András Ökrös, István Ráth, Dániel Varró, and Gergely Varró.
“Incremental pattern matching in the VIATRA model transformation system”. In Gabor
Karsai and Gabi Taentzer, editors, Graph and Model Transformation (GraMoT 2008).
ACM, 2008.

[4] Gábor Bergmann, Ákos Horváth, István Ráth, Dániel Varró: ”A Benchmark Evaluation of
Incremental Pattern Matching in Graph Transformation”. Lecture Notes in Computer
Science 5124: pp. 396-410, 2008.

[5] Jean Bézivin: “On the unification power of models”. Journal of Software and System
Modeling 4(2): 171-188, 2005.

[6] K. Czarnecki and S. Helsen: “Feature-based survey of model transformation approaches”.
IBM Systems Journal 45(3): 621–645, 2006.

[7] “Deliverable 4.1: Security modeling notation for evolving systems,” SecureChange (EU
ICT-FET-231101), Unpublished Draft Report ICT-FET- 231101 D4.1, 2009.

[8] “Deliverable 5.2: Documentation of forecasts of future evolvement,” SecureChange (EU
ICT-FET-231101), Unpublished Draft Report ICT-FET- 231101 D5.2, 2009.

[9] C. L. Forgy. “Rete: A fast algorithm for the many pattern / many object pattern match
problem”. Artificial Intelligence, 19(1):17–37, September 1982.

[10] Anna Gerber, Michael Lawley, Kerry Raymond, Jim Steel, Andrew Wood:
”Transformation: The Missing Link of MDA”. In: Proc. of International Conference on
Graph Transformations (ICGT), pp 90-105, 2002.

[11] Charles B. Haley, Robin C. Laney, Jonathan D. Moffett and Bashar Nuseibeh. “Security
Requirements Engineering: A Framework for Representation and Analysis”. IEEE Trans.
Software Eng., 34(1): 133-153, 2008.

[12] M. McGrath. Propositions. In Edward N. Zalta, editor, The Stanford Encyclopedia of
Phylosophy. Fall 2008.

[13] John Mylopoulos, Lawrence Chung, Brian A. Nixon: ”Representing and Using
Nonfunctional Requirements: A Process-Oriented Approach”. IEEE Trans. Software Eng.
18(6): 483-497 (1992)

[14] Armstrong Nhlabatsi, Bashar Nuseibeh and Yijun Yu. ”Security Requirements Engineering
for Evolving Software Systems: a Survey”. Journal of Secure Software Engineering
1(1):54-73, 2009.

[15] Normand, V., Felix, E., Jitia, C. “A DSML for security analysis,” IST MODELPLEX project
restricted deliverable 3.3.g. 2009.

[16] István Ráth, Gábor Bergmann, András Ökrös, Dániel Varró: “Live Model Transformations
Driven by Incremental Pattern Matching”. In: Lecture Notes in Computer Science 5063: pp.
107-121, 2008.

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 53/56

[17] István Ráth, András Ökrös, Dániel Varró: ”Synchronization of Abstract and Concrete
Syntax in Domain-Specific Modeling Languages”. Journal of Software and Systems
Modeling, Special Issue on Traceability, pp 1-19, 2009.

[18] István Ráth, Gergely Varró, Dániel Varró: “Change-Driven Model Transformation”. In Proc.
of Int. Conf. on Model Driven Engineering Languages and Systems (MODELS), Denver,
USA, 2009.

[19] Rational, “DOORS Homepage”, http://www-01.ibm.com/software/awdtools/doors/, fetched
2010.

[20] A. van Lamsweerde. “Goal–oriented requirements engineering: A guided tour”. In
Proceedings of the International Requirements Engineering Conference (RE 01), pp. 1-10,
2001.

[21] Yijun Yu, Jan Jrjens, John Mylopoulos. “Traceability for the maintenance of secure
software”. In: Proc. of the 24th Int. Conf. on Software Maintenance, pp. 297-306, IEEE,
2008.

[22] Zave, P. and Jackson M.: “Four dark corners of requirements engineering”. ACM
Transactions on Software Engineering and Methodology, 1997. 6(1): p.1-30.

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 54/56

Glossary

A claim is a (probably grounded)

predicate whose truth value will be

established by an argument., 19

A condition of situation is evaluated

to be true for situations that

require a change to maintain the

security requirements. It may

evaluate to false if the triggering

events do not lead to any change.

The condition must be monitored

whenever a triggering event

happens., 12

A context consists of several domains

which interface with each other.,

15

A dependum is associated with a

dependency relationship between

two actors, which specifies which

object (resource/process) or which

requirement (goals, softgoals) are

depended. Specifically, it can be

defined similarly for the

relationships Trusts/Delegates., 15

A derived requirements refines the

initial requirements., 15

A dynamic object can be a process that

consists of activities, 15

A goal is an objective that the system-

to-be should achieve., 15

A proposition is the sharable objects

of attitudes and the primary

bearers of truth and falsity, which

can be either an optative or an

indicative property., 15

A requirement is a desired or an

optative property wanted by a

stakeholder., 15

A resource is a physical or an

informational entity which has no

intention by itself., 15

A security goal is a soft goal that an

asset needs to be protected from

harms., 15

A situation is a partial state of the

world where some propositions

are true and some other

propositions are nor true nor false.

Thus, a situation consists of objects

and propositions concern these

objects, 15

A situation of our requirements

model is expressed in terms of

propositions and objects., 15

A soft goal is an objective that does

not have a clearcut evaluation of

the truth value., 15

A specification is a process that fulfils

certain requirements under given

indicative domain properties., 15

A triggering event is a dynamic

difference between two

consecutive versions of a model

that results in the activation of an

evolution rule., 12

A vulnerability is a weakness, a flaw

or a deficiency that is exploited to

carry out a threat to cause harm to

an asset., 15

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 55/56

An activity is a sequence of actions

that can be performed by an actor

to fulfill a goal, 15

An actor is an intentional entity such

as a human, a device, a legacy

software or software-to-be

component that performs actions

to achieve its own goals, 15

An adaptation action is the change

introduced to achieve or restore

the maintenance conditions, which

are, in the SecureChange context,

the satisfaction of security

requirements., 12

An anti-goal is a soft goal of an

attacker which may obstruct the

achievement of a security goal., 15

An argument contains one and only

one claim. It also contains facts and

rules in domain knowledge, 19

An asset is a resource which has a

value and needs to be protected, 15

An attack allows an attacker to fulfill

an anti-goal. In particular, an attack

is a situation in which vulnerability

is exploited to cause damage on an

asset., 15

An attacker is an actor who wants an

anti-goal to be satisfied., 15

An evolution rule is a formal

specification of automatic behavior

in reaction to changes in the model,

11

An initial requirement is an optative

property wanted by a stakeholder.,

15

An object is an actor, a process or a

resource., 15

Attacks is a relationship from one

situation to a vulnerable actor, 16

Carries Out is a relationship either

from an actor to a process, which

specifies that an actor carries out a

certain activity., 16

Contributions is a relationship among

goals/security goals which

indicates that a goal contribute to

the satisfaction of another goal., 16

Damages is a relation from an attack

to the assets, 16

Decomposes is a relationship from a

goal to its subgoals, which indicates

that a goal can be refined

AND-decomposition lists subgoals

that must all be satisfied in order

to satisfy the goal, whereas OR-

decomposition suggests

alternative ways to satisfy the

goal, 16

Delegates is a relationship from one

actor to another which specifies

that the fulfillment of a goal or the

provisioning of an

activity/resource, 15

Domain Knowledge is a set of

ungrounded predicates that can be

evaluated to true or false once the

values of all terms in the predicates

are known., 19

DSML stands for Domain Specific

Modeling Language., 2

Dynamic Oriented Object Requirement

System tools dedicated on

Requirement Management. For

further details see [19]., 40

 D.3.2 Methodology for Evolutionary Requirements | version 1.33
| page 56/56

Essential elements are elements of

logical layer specification (services,

data)., 6

Exploits is a relationship from an

attack to a vulnerability, which is a

(part of) specification that can be

vulnerable to expose security

problems, 16

Facts are grounded predicates --

something that are either true or

false where terms in these

predicate must be constant, 19

Fulfills is a relationship from

resources and activities to a goal,

which specifies a goals is fulfilled

by a combination of the resources

and the activities, 16

Transformation is the process of

deriving models from each other,

24

Incremental model transformations

update existing target models

based on changes in the source

models, and minimize the parts of

the source model that need to be

reexamined by a transformation

when the source model is changed.

These aspects are called target and

source incrementality., 25

Mitigations are another special kind

of arguments following the

iteration of rebuttals in order to

reestablish the truth value of the

associated claims, 19

Obstructs is a relation from an anti-

goal to the corresponding security

goal, 16

Provides is a relationship either from

an actor to resources, which

specifies that an actor provides a

certain resource and/or activity, 16

Protects is a relationship from a

security goal to a set of valuable

assets, 16

Rebuttals are a special kind of

arguments whose purposes are to

establish the falsity of their

associate claims or make them

indeterminable, 19

situation, 11, 16, 17, 18, 44

Targets are elements of physical layer

specification (physical component,

communication channel)., 42

The argument may require sub-

arguments to establish the truth of

certain facts or intermediate

predicates, 19

The context is a situation within

which the system-to-be will

operate, 15

Trusts is a relationship from one actor

to another, which indicates the

belief of one actor that the other

will provide a resource or will

perform a certain activity., 15

Uses is the opposite relationship to

Provides from an actor to

resources., 16

Wants is a relationship from actors to

goals which associates an actor

with its goals, including security

and anti-goals, 16

