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Executive summary 

Long lived  software systems evolve as their environment changes. When a change 
happens, security concerns need to be analyzed to re-evaluate the impact of the 
change on the system and on the assumptions about environmental properties. 

Typically, change requests are handled in an ad-hoc way: requirements are 
described informally in natural language, which is prone to ambiguity and uncertain 
traceability to the evolving design. There is no explicit means to analyze changes with 
respect to the security goals underlying the evolution of the system design.  

To address these problems in a repeatable and systematic way, we  have 
developed and adopted an iterative security methodology for evolving requirements 
(SeCMER).  

Every iteration of the SeCMER process starts with an elicitation stage that analyzes 
every change request into incremental changes of requirements models. These models 
are represented using consistent, state of the art modeling languages, such as Tropos 
and Problem Frames. Through a unified extension of existing Security Goals 
frameworks (e.g., Secure Tropos and Abuse Frames) it is then possible to represent 
specifications in such a way so as to reveal vulnerabilities through a systematic 
argumentation analysis, based on the facts and rules (propositions) about domain 
properties.  

Using the propositions in the requirements model, the argumentation process analyzes 
whether the design has exploitable vulnerabilities that might expose valuable assets to 
malicious attacks. Any facts and domain rules that help identify a rebuttal to the 
security goals are mitigated by introducing induced changes of security properties from 
the SeCMER conceptual model.  

Reflecting on the concrete results of rebuttals and mitigations in the argumentation 
analysis, the SeCMER process incorporates automated transformation support based 
on evolution rules. Every evolution rule can be specified formally by events, conditions 
and actions (ECA).  

From a rebuttal argument, events generalize the facts and conditions generalize 
the domain knowledge; from a mitigation argument, actions generalize the induced 
changes to restore the quiescent state of security requirement models.   

We illustrate the SeCMER methodology and its iterative process through a 
concrete example of evolution taken from the ATM domain. The example includes: the 
SeCMER models before and after changes of introducing the Arrival Manager tool and 
the SWIM communication system; the argumentation analysis for the security goal of 
protecting SWIM from malicious man-in-the-middle attack; and the example of 
evolution rules to generalize automatable monitoring and adaptation to the triggering 
and reactive changes to the SeCMER models. 

At the end of the report, we present the state of practice in processing security 
requirements, which will be improved by adopting the SeCMER. 
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1 Introduction 

Long-lived software systems often undergo evolution over an extended period of time. 
Evolution of these systems is inevitable, as they need to continue to satisfy changing 
business needs, new regulations/standards and the introduction of novel technologies. 
Such evolution may involve changes that add, remove, or modify system behavior; or 
that migrate the system from one operating platform to another.  These changes may 
result in requirements that were satisfied in a previous release of a system not being 
satisfied in its updated version. When evolutionary changes violate security goals, a 
system may be left vulnerable to attacks [16]. 

Dealing with changes to security goals poses several challenges, including: 

• Ad hoc elicitation of security goals. Most security goals are implicit or are added 
after security violations have happened, which makes it difficult to prevent 
security problems and address vulnerabilities in a proactive way; 

• Imprecise modeling of requirements. Security requirements, in order to support 
automation support, demand a formal description that can be used to analyze, 
argue and evaluate. Vaguely expressed informal natural language descriptions, 
are difficult for automatic functions to give an assessment of the problem and to 
provide useful mitigation advices; 

• Change management of security requirements is not integrated with risk 
modeling tools. It requires an explicit mapping between the changes of security 
requirements and the system vulnerability in order to assess their impact on the 
system-to-be. Due to the large gap between requirements tools such as 
DOORS and risk analysis methodologies and tools, mitigation is often a late 
response to continuous evolution of software systems. Integration of our 
methodology with WP5 will address this issue. 

• Even when changes have happened systematically, there are no mechanisms 
to argue formally about these changes with respect to the domain knowledge of 
the system. Will the system collapse due to a subtle change of a trust 
assumption, for example about the system boundary? Can the system respond 
to the introduction of a new fact or domain knowledge that often invalidate the 
existing justification of security? It is important to reach an agreement between 
stakeholders on the level of security of the system-to-be. 

The above difficulties are intertwined in the process of requirements engineering for 
secure software systems. When addressing these challenges, we propose to start with 
a well-known engineering principle that is simple enough to deal with different 
requirement modeling approaches, while at the same time it allows for the high-level 
analysis of the changes. 

According to Zave and Jackson [25], a problem-oriented system requirements analysis 
involves the understanding of the indicative domain properties in the physical world W 
and the specifications of the machine S, in relation to requirements R that are the 
optative domain properties.  Descriptions of phenomena of given (existing) domains 
are indicative - the phenomena and resulting behaviour can be observed. Descriptions 
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of phenomena of designed domains (domains to be built as part of the solution) are 
optative - one aims to observe the phenomena in the future.  

These relationships between properties establish a structure in order to facilitate the 
problem analysis. They are captured by the entailment relation: W, S ├ R.   

In order to extend Zave and Jackson's framework to address security concerns, 
security-related concepts such as assets, threats, vulnerabilities, attackers, trust 
assumptions, risks and satisfaction argumentation [11] must be added. When a system 
changes, the entailment relation W, S├ R may no longer hold. To be able to re-analyze 
the security of the system, the processes and rules of changes on the security goal 
models need to be represented in order to re-establish the satisfaction of W’, S’ ├ R’ 
where W', S', R' are respectively the changed domain properties in the description of 
the problem. Since security goals tend to be hard to guarantee, effective 
argumentations on the satisfaction of the entailment relation needs to include both 
positive and negative evidence to establish to what extent the trust assumptions hold 
and the system boundaries encompass.  

In this document, we take the position that changes of security goals can be modeled 
from three viewpoints, namely,  

• A problem-oriented analysis that relates the changes of security goals to both 
the changes in the specifications and the changes in the environment contexts; 

• A sequence of transactions that views changes as transitions of one valid state 
of the model to another, given that guard conditions, triggering events and the 
actions can be specified. In particular, these transactions are applied to the 
change management processes for security risk analysis to include the status 
indicating at which stage the security problems manifest; and  

• An argumentation structure for the claimed satisfaction of security goals by 
nesting both the positive and the negative evidence in terms of facts, domain-
specific knowledge, rebuttals.  

Since these viewpoints are related, we identify several possible connections of them. 
These connections, we hope, will help one obtain a meta-conceptual model that 
permits description of all changes.  

The remainder of this deliverable starts with Section 2, a formal description of the 
requirements evolution process in general that identifies key problems in dealing with 
evolving security properties: the assurance that the modified system can maintain all 
the existing security goals while new security properties need to be introduced to 
accommodate unexpected changes. In Section 3, the SeCMER process is introduced , 
to elaborate on the mechanisms for addressing the evolving security requirements 
problem highlighted in Section 2. An iteration of SeCMER process contains three main 
steps: Requirements Elicitation, Requirements Evolution, and Argumentation Analysis. 
Section 4 presents the detailed conceptual model used in a SeCMER process. Section 
5 explains rebuttal and mitigation for analyzing the security goals, and Sections 6 and 7 
present respectively the conceptual and mathematical model for the evolution rules, 
and their maintenance through incremental transformations. A detailed account of 
applying the SeCMER process is provided in Section 8.  
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2 Problems in Requirements Evolution  

Jackson identifies five artefacts in system development -- domain knowledge (W), 
requirements (R), specifications (S), programs (P) and the programming platform or 
computer (C) [23] -- and describes their general relationships using the logical 
entailment operator (├) as follows. 

W, S ├ R 

C, P ├ S 

The first entailment (W, S ├ R) differentiates between specifications S and 
requirements R by suggesting that the specifications, within a particular physical 
(world) context W, imply R. In other words, specifications rely on explicit domain 
properties in satisfying the requirements. In practice, stakeholders give descriptions of 
R and S. A problem, in this view of requirements engineering, is the challenge of 
obtaining a correct specification from the stakeholders. 

Similarly, the second entailment (C, P ├ S) differentiates between programs P and 
specifications S by suggesting that programs, on a particular computing platform C, 
imply specifications. Programs, therefore, rely on properties of the programming 
platform in satisfying the specifications.  

We view the strength of the logical entailment operator in these formulae to be non-
prescriptive: it means that the artefacts (W, R, S, P and C) may be described in varying 
degrees of formality, from statecharts, temporal logic, etc. to natural language. 
Likewise, showing that an entailment relationship holds for some given artefacts also 
may be done to different degrees of formality, from mathematical proofs to informal 
arguments, depending on the description language chosen and the specific needs of 
the stakeholders. When formal description languages are used, the proof can be done 
through logical deduction. 

In this sense, the two entailments provide a general framework for establishing and 
maintaining traceability links from requirements to program code, by factoring out 
properties of the world and the programming platform. Additionally, the entailments 
help define responsibilities of various stakeholders. In broad terms, the first entailment 
is the responsibility of requirements engineers, and the second entailment is that of 
developers. 

Finally, problem structures of software to be developed from scratch have different 
characteristics from those of software to be developed incrementally by modifying and 
extending an existing system. In the latter case, appropriate representation of the 
existing program as a partial solution to the future problem poses an important issue. 

In a typical evolutionary development project, there is an existing solution that satisfies 
current requirements. In particular, there is a problem Rnow in the present state of the 
world Wnow, and a specification of the current machine, Snow, to solve the problem such 
that: 

Wnow , Snow ├ Rnow     (1) 
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The current program Pnow, implemented on a particular computer, Cnow, satisfies the 
specification Snow: 

Cnow , Pnow ├ Snow      (2) 

 

Customers of this system want a new system in future, so that: 

Wfuture , Sfuture ├ Rfuture      (3) 

 

and the new system continues to satisfy requirements for the existing system: 

Wfuture , Sfuture ├ Rnow      (4) 

 

This entailment (4) captures an important property of systems in evolutionary 
development because its invalidation can tell us whether an existing security goal has 
been denied by the proposed system.  

Customers need a new program, either on the same or a different computer -- we 
restrict ourselves to the former in this work -- which satisfies the future requirements as 
specified in Sfuture: 

Cnow , Pfuture ├ Sfuture     (5) 

 

Importantly, developers do not wish to develop the system from scratch -- that is to 
say, refine Rfuture to Pfuture. Rather, they wish to reuse Pnow. 

 

A key question evolutionary development needs to address is that of representing the 
existing solution. If we take a rather formal view of the development, we may use the 
following process. First, obtain the new requirements Rnew, so that Rnow, Rnew ├ Rfuture. 
Since Pnow is already implemented on Cnow, describing Pnow running on Cnow as some 
given properties of Wfuture means (i) Pnow is reused as it is (ii) Snew (or specification for 
Rnew) has to acknowledge the existence of Snow and takes into account potential 
concerns that may arise from when implementation of Snew is composed with Pnow. 

For example, there could be shared variables between Snow and Snew, and 
implementation of Snew must not invalidate assumptions Snow has on those shared 
variables. Taking such concerns into account, refining Snew to Pnew will lead to a 
program that will compose with Pnow, producing the required Pfuture. 

This view assumes (i) developers do not modify Pnow and (ii) Pnew may be delivered in a 
single increment. Architecture of certain software such as product-line applications may 
allow these assumptions, but for other systems, these assumptions are not practical. 
The alternative approach suggested here recognizes that in evolutionary development 
projects, Pnow is usually modified and Pnew is rarely built in one increment. 

Allowing Pnow to change offers potential benefits. For instance, if the developers know 
that a complex problem can be solved using the Model-View-Controller (MVC) pattern, 
the problem maybe decomposed in such a way that the subproblems map to 
components of MVC. 
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It should be recognized that Pnow may be a piece of software that has evolved over 
time, and its current structure may not facilitate eventual composition with Pnew. 
Therefore, structural changes to Pnow to improve its modularity often simplify 
composition. As well as the benefits, there are potential risks: it is often difficult to 
understand the full impact of a particular change. 

In the next section, we present in more detail the different entities and relationships to 
represent the security goals and requirements and the propositions to reason in the 
argumentation process. 
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3 The SecureChange Methodology for 
Evolutionary Requirements (SeCMER) 

As mentioned earlier, the challenges of addressing evolving security goals arise from 
multiple facets of engineering problems. Existing methodologies deal with the 
changes in security goals with different focuses. For example, Secure Tropos have 
been used to model both functional and non-functional requirements of stakeholders as 
security goals. By modeling the delegation and trust relationship among these 
stakeholders, security problems of a social-technical system are elicited and reasoned 
about at a high level. On the other hand, Problem Frames approaches for security 
(e.g., abuse frames) focus primarily on modeling the relationship among the 
specifications of a software system, the indicative domain properties, and the optative 
requirements. As a result, patterns relating problems with solutions become reusable 
for such problem-oriented analysis. Both requirements engineering approaches handle 
risk assessment by extending the basic concepts with relatively new concepts to be 
able to handle the risk factors of likelihood and impact, and to be able to provide 
guidance for the mitigation of security problems in terms of threats, assets and 
damages, etc. 

Although individually these approaches are powerful in modeling and analysis of 
different perspectives of the security problems, it is easy to see that none of these 
approaches alone could provide a comprehensive basis to reason about the changes 
of security goals. Such a combination could benefit from the strengths of individual 
methodology, making clearer about the situation of the subject system in terms of 
security goals. Additional benefits include enabling a rule-based evolution support for 
transforming and maintaining the unified situations, extending a process-oriented 
change management support for documenting the problems in terms of security, and 
forming a basis for arguing the security of the life-long system for these documented 
problems. 

In fact, such a comprehensive framework requires fewer rather than more concepts. It 
would be considered a failure for us by simply adding up the existing concepts from 
different methodologies. Otherwise, it is still hard to combine the different modeling 
approaches to provide a consistent picture of the situations before or after the 
changes. Applying such a naïve approach invites inconsistency between these 
concepts, for the sake of security analysis, the situation could get worse than limiting 
oneself to applying each methodology separately. Therefore the first step in our 
methodology involves identifying equivalent or similar concepts among different 
conceptual frameworks. As a result, the combined situation framework has fewer 
concepts than the simple addition, and they are amenable to advanced analysis of the 
evolution of the life-long software systems.  

The SecureChange Methodology for Evolutionary Requirements (SeCMER) aims to fill 
this gap.  

After the first step, our methodology demonstrates the usefulness of the combined 
framework that can take advantage of continuous transformation-based evolution 
rules that govern the adaptation of evolving security goals. These evolution rules will 
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be developed into model-based transformation rules to automate the change process. 
The contribution of such transformation rules will help maintain the security of life-long 
evolving system through a continuous control loop that is composed of triggering 
events, conditions of situations  and transforming or adaptation actions.  
In parallel to the management of changes of requirements situations, security 
argumentation framework will help to provide detailed justifications for the 
documentation. The truth maintenance combines the change management systems 
and the argumentation framework through the control loops, implementing a full 
support at the requirements level for the continuous evolution of life-long software 
system. 

 

 
Figure 1. An Overview of SeCMER 

In Figure 1, the diagram summarizes the proposed SeCMER process for handling 
evolutionary requirements in secure software systems.  

The inputs to the process in the SeCMER methodology are: 

• Change Requests: Informal requests for change made by the users and customer 
of the secure software system. These requests are typically managed using tools 
such as Issue Tracking systems. 

• Existing Software Designs: Artifacts describing the main components of the 
systems—software, hardware, and people—their configuration, behavior and 
properties. They may be documented using natural language text, UML diagrams, 
or formal descriptions. 

• Requirement Models: Statements of properties, including security goals, the 
existing system satisfies. When changes are implemented, it is necessary to check 
whether properties of the existing design are satisfied by the new design, and if not, 
formulate properties that need to be satisfied by the new design. 

Focusing on security, the main output from the methodology is therefore either an 
assurance that the changes did not make the system violate the existing properties, or 
a formulation of new properties for the new design, namely the Security Properties to 
be implemented by the new design. Event-Condition-Action evolution rules discovered 
during the argumentation process can be used to monitor certain changes that can be 
handled automatically. 
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The proposed methodology for handling change has three main steps:   

1. Requirements Elicitation: When a change is proposed through a change 
request, the existing design is examined to (a) identify the context of the 
proposed change, (b) check whether the proposed change is necessary. In 
terms of the framework described previously, this stage establishes Wfuture and 
Rfuture. A conceptual model of static requirements (see Section 4 for guidelines) 
supports this step. 

2. Argumentation Analysis: This stage checks whether there are new security 
properties to be added or to be removed (∆ Security Properties) as a result of 
changes in the requirement model. Furthermore, a high-level and long-term 
feedback is possible, in order to adapt/update evolution rules in a way that 
more human effort can be saved by automation in the future. This stage derives 
the ∆ Security Properties (∆sp) so that ∆sp U Snow ├ Sfuture .This stage is 
supported by the conceptual model of argumentations presented in Section 5. 

3. Requirements Evolution: This stage takes into account the rebuttals and 
mitigations of arguments and the model of the requirements to produce a model 
of evolution rules that will automatically establish whether the existing security 
properties have been broken by the change or not. This stage checks the 
entailment (4) in the previous section, namely that Wfuture , Sfuture ├ Rnow. A 
conceptual model of transformation rules (Section 7) and a conceptual model 
for Change Requests (Section 6) support this step.  

Section 8 presents a complete example to illustrate how the methodology works. 

In practice, there are likely to be several change requests at a time, and these 
requests have to be stored, prioritized, scheduled, resourced, implemented and 
tested.  
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4 Security Requirements Elicitation  

The first step of SeCMER methodology is the elicitation of the security goals the 
system-to-be should be built on.  

A basic concept that comes into play when eliciting security goals is the concept of 
asset. Assets are target of attackers who perform malicious actions (aka attack) by 
exploiting the vulnerabilities of the system. Malicious actions compromise security 
properties of the system-to-be such as confidentiality, integrity and vulnerability. 
Security goals are, thus, elicited by applying a specific security mechanism to protect 
an asset from harms that violates a security property.  

To identify the security goals of a system it is, thus, crucial to model the assets of the 
system, the security goals that protect the assets, the malicious intentions of an 
attacker that can deny the security goals, the malicious actions the attacker carries out, 
the vulnerabilities the attack exploits, and the negative impact on the assets of the 
system. 

The SeCMER methodology’ security goals elicitation step produces a requirements 
model which is an instance of the SeCMER conceptual model. The conceptual model 
identifies a set of core concepts that allow linking the empirical security knowledge 
such as information about vulnerabilities, attacks, and threats to the stakeholder’s 
security goals. To create this link, the conceptual model amalgamates concepts from 
Problem Frames (PF) [12] and Goal Oriented requirements engineering methodologies 
(GORE) [13] with traditional security concepts such as vulnerability and attack. The 
combination of the two security goals engineering approaches has several advantages: 
with GORE analysis, malicious intentions of attackers can be identified through explicit 
characterization of social dependencies among actors; with PF security goals analysis, 
valuable assets that lie within or beyond the system boundary can be identified through 
explicit traceability of shared phenomena among physical domains and the machine 
itself.  

4.1 The SeCMER conceptual model 
The very top of the conceptual model (Figure 2) is adopted from DOLCE [10], a 
foundational ontology intended to account for basic concepts that underlie natural 
language and human cognition. Lower levels of the conceptual model include concepts 
from GORE, PF and argumentation frameworks, with security concepts occupying the 
lowest strata of the conceptual model. Key among the concepts that are introduced is 
the concept of Proposition, with instances such as ``Want for customers for our 
business" and ``Paolo is married``. The other key concept is that of Situation, 
representing a partial state of the world, e.g., ``High oil prices``, or ``Unhappy 
customers are many``. 

The most general concept is Thing, which has as instances all the things that can exist 
in the world.    
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Figure 2. Security Requirements Conceptual Model 

An object is a thing that persists (endurant in [10]). An event, instead, is an 
instantaneous happening (perdurant) that changes certain objects. Specializations of 
the concept Object include Proposition, Situation, Entity, and Relationship.  

A proposition is an object representing a true/false statement. A situation is a partial 
state of the world described by a proposition (its description [10]). Arbitrary propositions 
are true/false/ undefined in a situation, given its partial world status. The status of the 
world is expressed by a predicate over the entities involved.1 

Situations can have structure consisting of relationships and things standing in those 
relationships. Some entities and relationships according to the common sense always 
satisfy certain predicates, making them strong beliefs or trust assumptions.  

Thus, the entities and relationships are modeled to reflect the predefined assumptions 
about the world being modeled. 

An entity is an object that has a distinct, separate existence from all other things, 
though that existence need not be material. Thus, “Santa Claus”, “my cancelled trip”, “a 
square circle” are entities. A relationship, on the other hand, is an object that 
participates in a certain situation along with other objects (its relata); the existence of a 
relationship depends on that of its relata. 

Entities. Entity is specialized into Actor, Action, Process, Resource, and Asset.2 An 
actor is an entity that can act and intend to want or desire.  Stakeholder and Attacker 
are two important specializations of Actor for the domain of security goals. A 
stakeholder is an actor who has a stake in the system- to-be, while an attacker wants 
to prevent the fulfillment of the requirements for the system-to-be.  

                                                        
1 Note that predicates are a special form of propositions, and through reification they can be 
grounded into sentences of propositions. 

2 Actor, Action, Process, Resource, and Asset  are concepts adopted from GORE  approaches. 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An action is an entity performed by an actor, which can generate events, and can have 
preconditions and post-conditions. A process is an entity that generates events and 
changes objects.  Activity is a specialization of Process, consisting of actions. Attack 
specializes Activity, and is always carried out by an Attacker. We distinguish between 
Process and Activity in the conceptual model because we want to allow for processes 
that do not involve any actions, e.g., a fire burning, or an earthquake. A resource is an 
entity without intention or behavior. An asset is an entity of value that can be owned 
and used. For example, an asset can be an passenger (actor) whose life needs to be 
protected, can be an engine (process) whose behavior has a value to the protector, or 
can be an aircraft (resource) whose value are tangible for other actors. A relationship 
such as the organization chart of the air traffic management organization is also an 
asset as long as its value needs to be protected. 

 

Relationships. Specializations of Relationship include do-dependency, can-
dependency and trust-dependency adopted from Secure Tropos. These are all ternary 
relationships between two actors and an asset. In addition, there are many binary 
relationships that characterize other concepts in the conceptual model. For example, 
actors are entities that want goals and carry out actions. Composes, contributes, uses, 
and provides relationships are also included in the conceptual model. AND/OR 
refinement is a relationship between a goal and two or more other goals that indicates 
that a goal can be refined into subgoals. Contributes relates two goals and indicates 
that one goal has a positive or negative impact on the satisfaction of the other. 
Provides is the relationship from an actor to a resource, specifying that the actor 
provides the resource. Uses is the relationship from a process to a resource denoting 
that the process generates or consumes the resource. Fulfills relates an entity to a goal 
that the entity fulfills.  

For the sake of security goal analysis, the conceptual model includes also the following 
specializations of Relationship: damages, exploits, protects, and denies. Damages is 
the relationship between an attack and an asset, where the attack causes harm to the 
asset. Exploits is the relationship between attack and vulnerability. Protects relates a 
security goal to an asset. Finally, denies relates an anti-goal to a requirement. A 
complete list of all the possible relationships is found in Figure 3. 

Propositions. Proposition is specialized into Fact, Claim, Argument, Domain 
Assumption, Quality Proposition, and Goal, depending on the different types of 
proposition modalities.  A fact is a true proposition. A claim is a proposition claimed to 
be true by an actor. An argument is a proposition consisting of a set of claims. A 
domain assumption is a proposition about the domain assumed to be true by an actor. 
A quality proposition is a proposition about the quality of the system-to-be. A goal is a 
concept found in GORE approaches, and represents a proposition an actor wants to 
make true. For security analysis purposes, Goal is specialized into Requirement, 
Security Goal, and Anti-Goal. A requirement is a goal wanted by a stakeholder. A 
security goal prevents harm to an asset through the violation of confidentiality, integrity, 
and availability security properties [12]. An anti-goal is a goal an attacker wants which 
denies the fulfillment of a requirement of the system-to-be. 

Situations. The Context and Domain concepts coming from PF approaches are 
specializations of Situation. These concepts are useful to define the situation of system 
boundaries, to allow one place focus on analysis while hide the unnecessary details. 
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For the analysis of every problem or subproblem, a different situation may be selected 
from the physical world. Thus the context is a situation in which the system-to-be will 
operate; and a domain is a situation that is part of the context. In PF, domains can be 
classified as biddable, causal, and lexical.  By biddable, a domain's behavior is not fully 
predicable or controllable, usually represented by human actors or natural processes. 
By causal, a domain's behavior is predicable or controllable, usually represented by 
activities. By lexical, a domain's behavior is predefined, usually by a resource. Another 
concept adopted from Problem Frames is Specification. A specification is an entity 
consisting of actions, quality propositions, and domain assumptions. Thus, a collection 
of indicative propositions is about the entities in the system-to-be. 

In the security domain, vulnerability is a situation where some actions that are part of 
an attack can be carried out (i.e., their preconditions are satisfied). A threat, on the 
other hand, consists of a situation that includes an attacker and one or more 
vulnerabilities. 

 
Thing :: = Event | Object | ……. 

Object  :: = Situation | Proposition | Entity | Relationship 

Situation :: = Domain | Context | Vulnerability | Threat | Specification  

Context :: = {Domain} 

Proposition :: = Argument | Predicate| Claim |Domain Assumption| Quality  Proposition | Goal 

Argument :: = {Claim | Rebuttal | Mitigation} 

Goal :: = Requirement | Security Goal | Anti Goal 

Entity :: =  Action | Process | Actor | Resource | Asset  

Activity :: = {Action} 

Attack :: = Activity 

Actor :: = Stakeholder | Attacker 

Specification :: = {Domain Assumption} {Quality Proposition} {Action} 

Relationship :: =  fulfills | exploits | protects | denies | damages |  wants |carries out | uses | provides | trust-
dependency | do-dependency | can-dependency | composes | contributes| ……. 

Figure 3. Conceptual Model Representation in EBNF 

Figure 3 summarizes the elements of our ontology in Extended Backus-Naur Format  
(EBNF). A EBNF rule of the form A::= B |C  | ... indicates that concept  A has concepts 
B and C (and possibly others) as specializations. A rule of the form A ::= {C} indicates 
that each instance of A consists  of (has parts) zero or more instances of C. The 
notation [] is similar to { } but  allows for zero or one instance. 
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5 Argumentation Analysis for Evolving 
Security Goals  

As we discussed in the introduction, the satisfaction of security goals in the general 
form of the entailment W, S ├ R needs to be argued, as security goals are often a 
collection of claims whose satisfaction depends on the trust assumptions (facts and 
domain knowledge), as well as any rebuttals and mitigations. 

Our argumentation is based on the informal Toulmin structures in the 1950’s [2]. 
However, to consider it in the formal settings, we have simplified the conceptual 
models. The most important concepts in arguments are defined as follows: A claim is a 
(probably grounded) predicate whose truth-value will be established by an argument. 
An argument contains one and only one claim. It also contains facts and rules in 
domain knowledge. Facts are grounded predicates -- something that is either true or 
false where terms in these predicate must be constant. Domain Knowledge is a set of 
ungrounded predicates that can be evaluated to true or false once the values of all 
terms in the predicates are known.  

The predicates referred by the domain knowledge do not have to be known facts. 
However, the predicates that appear in the domain knowledge are all relevant 
(necessary) to the argument for the truth-value of the claim to remove any redundancy. 

Every argument also has a timestamp, which indicates the iteration during the 
argumentation process. For a given argument, an initial iteration is to establish the truth 
of its associated claim. The argument may require sub-arguments to establish the truth 
of certain facts or intermediate predicates. These sub-arguments are also arguments, 
but they are meant to provide supporting evidence (as sub-claims). On the other hand, 
rebuttals are a special kind of arguments whose purposes are to establish the falsity of 
their associate claims or make them indeterminable. Similarly, mitigations are another 
special kind of arguments following the iteration of rebuttals in order to reestablish the 
truth-value of the associated claims. Both rebuttal and mitigation arguments do not 
need to contain all the facts and rules. Only incremented facts or rules need to be kept 
in such follow-on arguments because they are always applied after previous 
arguments. Of course, the same reasoning mechanism should be used consistently for 
all arguments. 

Claims can be very general. For example, “The Arrival Management (AMAN) system 
from the air traffic management domain is safe and secure” can easily invite different 
opinions. To support such claims, one need to use the facts or domain knowledge in 
the field; to refute the supportive evidence for the claims, one can draw on additional 
(often non-monotonic or negative) facts and domain knowledge to form claim rebuttals. 

As a result, after argumentation analysis is done, one may turn the arguments into 
evolution rules as follows: 

• The facts and domain knowledge rules that cause a rebuttal argument are 
generated into a pattern that match the SeCMER requirements model; 

• The new facts and domain knowledge rules introduced by a mitigation 
argument (some of them are new security properties) are generalized into an 
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incremental transformation where the “before” state of the transformation is the 
SeCMER requirements model before the mitigation, and the “after” state of the 
transformation is the SeCMER requirements model after the mitigation.  

Both the pattern and the incremental transformation may be represented explicitly as 
an evolution rule in the SeCMER methodology in hope that similar changes that may 
rebut the satisfaction of similar existing properties can be mitigated automatically.  

In case it is not possible to generalize, the instance level changes will be kept as trivial 
evolution rules that only matches with the exact situation and does the exact mitigation. 
Such trivial rules can still be useful to help a regression analysis.  

More detailed evolution rules as generalized mitigations can be seen in Section 6 and 
7. A detailed example of the argumentation analysis is given in Section 8, along with 
the application of whole SeCMER methodology. 
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6 Security Requirements Evolution 

After specifying the static view of situations about the security goals, the next step in 
our methodology is to deal with the dynamic view. In a reactive view of the 
classification, situations are observed to change over time.   

We consider three different perspectives to change: the maintenance perspective, the 
before-after perspective, and the continuous perspective. The maintenance 
perspective corresponds to an a-posteriori unplanned evolution to which it is necessary 
to react upon; before-after perspective corresponds to a-priori planned, anticipated 
evolution, while continuous perspectives corresponds to changes happening 
continuously over time.  Maintenance and Before-After perspectives are the most 
commonly used in an industrial context. 

We consider elementary and composite changes in the security requirements model. 
Elementary types of changes include the modification, the addition and the removal of 
a concept or a relationship between them.   

Composite changes are a transaction of elementary changes (or nested composites) 
that must happen together or not at all. For example, the addition of a new security 
goal G requires to add also a relationship “protects” between the node representing G 
and the node representing the asset protected by G.  

6.1 ChangeLine Conceptual model 
Changes are typically managed by a process, which is typically assisted by a change 
management system. When security-related changes are considered, the process 
must include the state of models with respect to validation and assessment of security 
goals. An orthogonal dimension is how to help human to manage the dashboard status 
of the security of the overall achievement, during which errors are allowed to be fixed 
and issues are allowed to be addressed. Resolution of such issues may lead to 
addressing the target of a security risk at the design level. In other words, the 
vulnerability of the specification can be associated with a particular risk factor in 
satisfying certain security goal. 

To represent traceability between changes and versioning of change, we add a further 
conceptual model: a Change Model is composed by several Change Lines. A 
Change Line is considered as set of Changes and Change Transitions to preserve 
links and grant consistency between successive changes which compose a Change 
Line. Change is described by a Change Trigger (e.g. discover a fault or a new threat) 
which activates a Change Request. It’s also possible to activate a Change Trigger by 
a threshold defined in an Evolution Function which monitors the static model of the 
system. Evolution functions enable to represent Continuous Perspective of change. 
Change Lines enable to represent both the maintenance perspective and the before-
after perspective.  
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Figure 4. DSML Change Model conceptual model 

 

6.2 ChangeRequest Conceptual model 
As shown by Figure 4, a Change Request contains a PUID to identify it and a status 
representing the state of Change request. After the activation of Change Request by 
the Change Trigger, Change Request status is first defined in CCB (Configuration 
Control Board). The configuration (or change) control board (CCB) is a meeting 
between all actors of a development team (client, manager, quality, design, integration, 
…) to define the change request status (e.g. accepted, refused or postponed in the 
next version of system). The detailed behavior of Requirement Change Request is 
described in next section. 

To instantiate a Change Request inside different models, we have specialized it in 
three kinds: 

• A Requirement Change Request modifies the Requirement Model 
(Requirement, Objectives). It’s possible to map this kind of Change Request 
with DOORS Change Request. 

• A Context Change Request modifies the Context Model (e.g. system 
architecture). 

• A Risk Change Request modifies the Risk Model (Risk, Threat, Damage, 
Vulnerability). 

These three kinds of Change Request are dependants; a Requirement Change 
Request could impact on Risk Change Request and Context Change Request and vice 
versa. This is why we consider a traceability relation between those Change Requests. 
This relation is described by an association called “impacts_on” (see Figure 5). 
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Figure 5. DSML Change Request Conceptual model 

 

6.3 Behavior of Change Request 
For the sake of readability, the generic Change Request Behavior is described by UML 
Statechart Diagram (see Figure 6a). We present on the one hand the generic behavior 
of Change Request including CCB status relations. On the second hand we describe 
the specific behavior of Requirement Change Request. 

A Change Request (CR) starts after Change Trigger activation (e.g. discover a fault, a 
new requirement, etc.). Redactor of Change Request must define the change and trace 
it with the impacted elements. Change Request is as default in Pending State.  

A CCB must be planned; it monitors the Change Request Status which could be in the 
following states: 

• Refused, CR is not relevant; it is not integrated in system. Change Request is 
ended in this state. 

• Postponed, CR is relevant but it’s not possible to integrate it in the current 
version of the system. This CR is planned for the next version. CR returns in 
Pending State during this system version. 

• Accepted, CR is integrated in current version of system. 

If CR is accepted, it will be In_process macro state. This macro state is specialized for 
several DSML Models (Risk, Requirement or Context). 

CR is finish if and only if it’s closed in CCB with client agreement. 
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Figure 6. Change Request Status Behavior (a) generic (b) requirements-specific 

Specific Requirement Change Request (RCR) Behavior starts after Accepted state 
in generic behavior. As shown by Figure 6b, Requirement Change Request Status is 
represented by the sequence of following states: 

• To_be_Managed, redactor of Requirement Change Request must take into 
account impact of this change request with the other elements (Risk and 
Context) and change them if necessary with new CR(s). 

• In_progress, redactor must define changed requirement, designer must 
models them, and developer must implement them. 

• To_be_verified, integrator must take into account these changes in test 
campaign (and change test scenario if necessary). 

• Resolved, RCR Status will reach this state if and only if changed requirement 
are verified in test campaign. 
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7 Process Automation by Evolution Rules 

The SeCMER approach prominently features on an automated step. This work phase 
is carried out automatically by monitoring the existing requirements model (as well as 
other interconnected models) and reacting to applied changes. The reactions are 
defined by Evolution Rules. With carefully specified evolution rules, the automated rule 
application can save significant manual effort, e.g. in the argumentation phase. 

Upon each change, reactions are performed iteratively as long as any evolution rules 
are still applicable. Therefore the requirement model serves both as input and output of 
this system component. Further inputs include the changes experienced by the 
requirement model, and the definition of the evolution rules themselves.  

Section 7.1 elaborates why and how evolution rules can be a useful contribution to 
SeCMER methodology. Section 7.2 presents some background knowledge from the 
field of model transformation, on which our proposed concept of evolution rules is 
based. Section 7.3 explains the conceptual model of Evolution Rules, while Section 7.4  
gives precise mathematical foundations.  

7.1 Goals for the evolution rules 
There are at least three ways requirements modeling environments can benefit from a 
mechanism for automated (rule-based) reaction to changes:  

• Internal consistency checking and on-the-fly evaluation of well-formed 
constraints,  

• Synchronization against other models (risk analysis, design, etc.) and 
information propagation via model transformation techniques, 

• Saving human efforts by identifying the extent and influence of change to 
determine where manual change analysis and argumentation is needed, by 
preparing automatically deducible information for this manual reasoning, and 
possibly by complete automation of simpler, deterministic steps of the 
argumentation process.  

The task of constraint evaluation is not specific to requirements or security engineering, 
only to the actual conceptual models. Therefore it can be considered out of scope for 
SecureChange, and will not be discussed here in detail. Results of this approach are 
shown in [18]. 

Integration with other models outside the requirements scope is a future task for 
SecureChange, and will be discussed in upcoming deliverables. 

The current deliverable focuses on the third type of automation, which is specific to the 
domain of (security) requirements evolution, and closely tied to the methodology. We 
argue that requirement modeling environments should be equipped with an 
automatism that is capable of identifying the effects of the change and thereby 
reducing the amount of required human effort to deal with the change. We propose that 
Evolution Rules be defined to accomplish the following: 
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• By operating over an interconnected requirement model and argumentation 
model, evolution rules can identify cases when a change in the model 
influences an evidence in support of a previous argumentation activity, and 
consequently flag the argument for manual re-evaluation 

• Efficient identification of security goals whose satisfaction is implied by the 
model. Raise alerts (e.g. towards the argumentation staff) if a previously 
satisfied goal becomes unsatisfied (more precisely, if the satisfaction not 
provable anymore) due to changes in the model. Cases where the satisfaction 
of a rule can be determined automatically include the following: 

o There is already a valid (not flagged) argument, constructed in a 
previous argumentation session that decisively supports the satisfaction 
of the goal. 

o The goal is decomposed (AND/OR) into subgoals, and its satisfaction is 
implied by the satisfaction of subgoals. 

o In some cases, model entities connected in a certain way may 
automatically imply the satisfaction of the goal. For example, if the goal 
is delegated to an actor, who carries out an action that fulfills the goal, 
and there is no corresponding attacker with an anti-goal, than the goal 
can be considered satisfied without manual argumentation. Some of 
these rules are expected to be domain-specific (e.g. ATM-only) and to 
emerge from the argumentation process by carefully scrutinized 
inductive optimization and rule formalization. 

o Similarly, it can be determined by given (possibly domain-specific) 
conditions that artifacts in other models (through traceability relations) 
automatically guarantee the satisfaction of the goals. 

• Automatically making decisions and deterministic changes to the requirements 
model, or instantiating several options (i.e. draft solutions) and offering them to 
the requirement engineers, if and when such automation is applicable. Once 
again, such rules are expected to be domain-specific (e.g. for ATM) and to 
emerge from the argumentation process by carefully scrutinized inductive 
optimization and rule formalization. 

The list above is not necessarily exhaustive, and while we will show a number of 
examples (see Section 8) some rules are expected to be specific to the application 
domain / case study. Therefore the focus is primarily at the proposed language and 
mechanism for defining and efficiently evaluating evolution rules.  

The framework and language for specifying evolutions rules for the security-related 
aspects of the engineering model should 

• support complex structural requirements that are difficult and error-prone to 
oversee manually; 

• allow the capturing of change events in terms of similarly complex structural 
relations, thereby treating change as a first-class citizen; 

• provide automated alerting of criteria that cease to be satisfied; 

• allow flexible adaptation to domains, e.g. ATM; 
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• enable the flexible, scenario-specific definition of the aforementioned complex 
criteria;  

• enable the engineer to define automated reactions to change events where 
applicable; 

• enable the reactions for automatic reconfiguration of the design model; 
automatic application of security-related design decisions; and automatic 
reusing of design artifacts (e.g. argumentations), to be filled later by the 
engineers, that are required for a system evolution to be admissible from a 
security viewpoint. 

7.2 Underlying model transformation technology 
The language and efficient implementation of evolution rules relies on technology 
pioneered for automated model transformations. As revealed in many surveys and 
papers during the recent years [5][6][11], model transformation (MT) languages and 
tools play an important role in modern model-driven system engineering in order to 
query, derive and manipulate large, industrial models.  

As a typical example, tool integration requires that a complex relationship be 
established and maintained between models conforming to different domains and 
tools. In the context of SecureChange, synchronization involving requirement and 
design models would pose a transformation problem.  

Model synchronization tasks can be formulated as the obligation to keep a model of a 
source language and a model of a target language consistently synchronized while the 
underlying source model (and sometimes the target also) is evolving. Model 
synchronization is frequently captured by transformation rules [2]. When the 
transformation is executed, traceability links are also generated to establish logical 
correspondence between source and target models.  

Traditionally, model transformation tools support the batch execution of transformation 
rules, which means that input is always processed “as a whole”, and output is always 
regenerated completely. However, in case of large, complex, and continuously evolving 
models, batch transformations may not be feasible. To address the issue of model 
evolution, incremental model transformations (i) update existing target models based 
on changes in the source models [18], and (ii) minimize the parts of the source model 
that need to be reexamined by a transformation when the source model is changed [3]. 
In the terminology of [6], these aspects are called target and source incrementality, 
respectively.  

Since rules are defined in terms of patterns and actions, pattern matching plays a key 
role in the execution of model transformations. The goal of pattern matching is to find 
the occurrences of a pattern, which imposes structural as well as type constraints on 
model elements. Source incrementality can be achieved by employing incremental 
pattern matching techniques; for example, the RETE [9] incremental algorithm was 
used in [3].  

The central idea of incremental pattern matching is that occurrences of a pattern are 
readily available at any time, and they are incrementally updated whenever changes 
are made. As pattern occurrences are stored, they can be retrieved in constant time – 
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excluding the linear cost induced by the size of the result set itself –, making pattern 
matching a very efficient process. Benchmarks [4] and practice have shown that 
incremental pattern matching can improve performance or scalability by up to several 
orders of magnitude in certain scenarios.  

Based on source incrementality, it is also possible to detect the appearance and 
disappearance of pattern matches efficiently. Ráth et al [18] introduced a live 
transformation approach where a model change is captured by a change in the match 
set of a graph pattern, and transformation rules are triggered by such events.  

7.3 Conceptual model for evolution rules 
Evolution rules control how one model, or an interconnected set of models, follow the 
evolution of a source model in order to maintain security and other objectives (Figure 
7) Evolution rules are defined in conformance with the Event – Condition – Action 
semantics [1] to specify the desired reaction to changes performed on the model.  

Basically, an Event captures an elementary transition of the system to a different (not 
necessarily internally consistent) state, identifying the change that happened between 
the two states. An Action is a list of operations that constitute the reaction to that event. 
The strength of the formalism is that the reaction can depend on the context where the 
event happened, as defined by the Condition part. Event and Condition both serve as a 
way of monitoring the evolution of a system. The key difference is that Event captures 
a dynamic change in the system, while Condition identifies the static context where this 
change happened. 

The Event part of the evolution rule is matched against every change executed on the 
model. The Condition may restrict the cases where the rule is applicable, and may 
select multiple ways to apply it. The Action part manipulates the model by issuing 
change commands itself; these changes will eventually be processed like any other 
change operation, and reacted upon by evolution rules. 

Various kinds of change commands can be issued. The most basic change kinds are 
the creation of entities and relationships of a specific type, deleting them and modifying 
their values. This list of change kinds is extensible to incorporate a more refined notion 
of changes, or domain specific change macros.  

An actual change command has a change kind and refers to actual entities or 
relationships as affected elements. The definition of an evolution rule, however, refers 
to rule variables as affected elements instead. The Event part match changes against 
one or more change queries. Each of them captures the change in terms of the 
appearance or disappearance of element configurations (patterns). An attribute 
contains the sign of the change query. The appearing/disappearing element 
configuration of the change query is described by a set of predicates formed on rule 
variables. The Condition part describes the context of the event, likewise with 
predicates on variables. Some of these variables are typically used by the change 
queries as well. The two most common predicate types are entity predicates 
(constraining a variable to a given entity type) and relation predicates (constraining a 
variable to a given relation type, connecting a source variable and a target variable). 
The Action part contains a sequence of reaction templates that are parameterized by 
rule variables appearing in the Event, Condition or even preceding reaction templates, 
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and can be instantiated into applicable commands by substituting the parameter 
variables. The most important type of reaction template is the change template that can 
be instantiated into a change command of a certain change kind. The evolution rule 
contains all variables mentioned by the Event or the Condition, a subset of which is 
accessed by the Action. 

Change queries are intended to match actual change events that cause the 
appearance or disappearance of the appropriate patterns, and substitute the variables 
to the affected elements. After that, the Condition is evaluated to decide whether the 
rule can be applied for this particular change, and to substitute remaining free 
variables. The Action is applied for each possible substitution; this means instantiating 
all reaction templates with the substituted values of variables. In case of change 
templates, the resulting change commands can be submitted for execution and 
evolution rule application. 

  
Figure 7. Conceptual model for evolution rules 

7.4 Mathematical foundations 
The notion of Evolution Rules has precise mathematical underpinning based on the 
theory of graph transformation. For purposes of formalization, we represent the 
requirement model and other associated models such as design as (attributed) graphs. 
Whether and when a rule is applicable is determined by the formalism of graph 
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patterns in case of static models; or the more advanced graph change patterns in case 
changes are taken into consideration. 

7.4.1 Graph Patterns 
Our Evolution Rule formalization relies on the concepts of graph model, graph pattern, 
pattern matching and NAC, widely known in the field of graph transformation. 
Definition 1 (Graph Model) A graph model over a type system Type is a structure 
G=〈Ent,Rel,src,trg,typ〉 where Ent  is a set of entities  (graph nodes), Rel  is a set of 
relations  (graph  edges);  src,trg:Rel→Ent  map  the  relations  to  their  source  and 
target entities, respectively; and the typing of elements is typ:ME→Type where ME 
is an abbreviation for the set of model elements Ent∪Rel. 

Our graph model assumes that each entity and relation takes its type from a type 
system which is simplified here to a set of predefined types. Note that we make no 
assumptions on the actual types here, so that model elements from other modeling 
domains can be represented in connection with requirements. The notion of type 
compatibility is beyond the scope of this simplified formalization. Various other model 
features such as containment or attributes are also omitted here for brevity.  

Definition 2  (Graph Pattern) A  graph pattern P=〈V,C〉  over a  type  system Type 
contains  a  set  V  of  pattern  variables,  and  a  set  of  graph  constraints  C=Cent∪Crel 
attached to them. Entity constraints Cent⊆V×Type state that a variable is a node of a 
certain type. Relation constraints Crel⊆V×V×V×Type state that a variable is an edge 
of a certain type, connecting two given variables representing the source and the 
target of the edge. To identify the variables and constraints of a specic pattern P, 
we use VP and CP , respectively. 

The pattern language also permits additional constraints such as containment, equality 
and inequality, attribute constraints, or pattern composition, which are not detailed 
here. 

Definition  3  (Graph  Pattern  Match)  A  substitution  s:P→G  of  a  graph  pattern 
P=〈V,C〉 in a graph model G=〈Ent,Rel,src,trg,typ〉 over a type system Type is a set of 
variable assignments asgn∈V×ME, one for each variable v∈V. Let s(v)∈ME denote 
the model element assigned by s to the variable v∈V.  

A substitution satisfies an entity constraint c=〈v,t〉∈Cent  iff  typ(s(v))  is compatible 
with t. A substitution satisfies a relation constraint c=〈v,a,b,t〉∈Crel iff src(s(v))=s(a) 
and trg(s(v))=s(b) and typ(s(v)) is compatible with t.  

A match m:P→G is a substitution that satisfies all constraints c∈C of P, which will 
be denoted by G,m⊨P. 3 

                                                        
3 Remark: from now on, we assume that a single type system Type is given, and will not include it in 
each further definition. 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A negative application condition (NAC, indicated by the neg keyword) prescribes 
contextual conditions that, if satisfiable, invalidate a match of the pattern. 

Definition  4  (Graph Pattern with Negative Application  Condition)  A  pattern 
with NAC is PN =〈P,N*〉 where P=〈V,C〉 is a (positive) graph pattern, and N* is a set 
of  negative  application  conditions  Ni=〈Vi,Ci〉,  each  being  a  well‐formed  graph 
pattern, such that P⊆Ni meaning that V⊆Vi and C⊆Ci. 

Commonly, only the subpattern SNi=Ni\P is explicitly indicated and depicted in figures 
and code extracts, which is defined as SNi=〈SVi;SCi〉, where SCi=Ci\C and SVi⊆Vi is 
the set of variables involved in SCi.  

Definition 5 (Match of Graph Pattern with NAC) A match m:PN→G of PN=〈P,N*〉 
in  graph  model  G  is  a  match  of  the  positive  pattern  G,m⊨P,  where  there  is  no 
Ni∈N*  and  match  mi:Ni→G  such  that  m⊆mi  (meaning  that  mi(v)=m(v)  for  all  v 
variables of P). 

Some graph pattern languages, including the one that will serve as the basis of 
Evolution Rules, even permit NACs to have NACs of their own. If there is no limit on 
the number of negations that can be nested within each other, graph patterns (without 
attribute constraints) become expressively equivalent to first order formulae over the 
predicates describing the graph model [19]. 

7.4.2 Graph Change Patterns 
We define the advanced formalism of Graph Change Patterns (not to be confused with 
the change pattern concept of WP2) to capture how a graph model changes in an 
evolution. In addition to conventional graph patterns matched against the current 
snapshot, a change pattern should also contain constructs for expressing the 
difference between two graphs, in the form of appearance and disappearance queries.  
When matching change patterns, the key idea is to simultaneously match them against 
a pair of graph models, called the pre-state (before state) and the post-state (after 
state). Appearance queries are graph patterns whose matches have appeared in the 
post-state, but were not present in the pre-state; and disappearance queries are 
patterns whose match has disappeared. 

In some scenarios, the appropriate reaction to a change does not only depend on the 
after state, but also on the net change (or equivalently, the before state). The true 
strength of Graph Change Patterns is the ability to distinguish cases where the current 
(after) state is the same, but it was reached through different cases, from different 
before states. As the pattern variables are mapped to the locality of the change, a 
match of the Graph Change Pattern also pinpoints where the reaction should be 
applied. 

Definition 8 (Graph Change Pattern) Graph Change Patterns (CP) can be defined 
as a  tuple CP=〈PN,P+*,P‐*〉, where PN=〈P,N*〉  is  the main graph pattern, while P+* 
and  P‐*  are  two  sets  of  graph  patterns,  called  appearance  queries  and 
disappearance  queries  (together  change  queries).  Appearance  queries 
Pi=〈Vi,Ci〉∈P+*  and  disappearance  queries  Pj=〈Vj,Cj〉∈P‐*  are  allowed  to  share 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variables with P, and  the set of  common variables  is  their  interface  Ii=Vi∩VP and 
Ij=Vj∩VP. 

CPs are matched against a pair of graphs Gold and Gnew, such that Gnew is derived from 
Gold by model manipulation, and thus Entold and Entnew may intersect on elements that 
were preserved in the transformation, as well as Relold and Relnew. 

Definition  9  (Match  of  Graph  Change  Pattern)  A  match  of  the  Graph  Change 
Pattern  CP=〈PN,P+*,P‐*〉  in  〈Gold,Gnew〉  is  the  structure  m=〈mP,m+*,m‐*〉: 
CP→〈Gold;Gnew〉, where  

• mP: PN→ Gnew is a match of PN, in the after state Gnew. 

• m+* consists of a match mi:Pi→Gnew for each Pi in P+* such that 

• mi(v)=mP(v) for interface variables v∈Ii, and  

• Gold,mi⊭Pi.  

• m‐* consists of a match mj:Pj→Gold for each Pj in P‐* such that 

• mj(v)=mP(v) for interface variables v∈Ij, and  

• Gnew,mi⊭Pj.  

Note that this definition is deliberately asymmetric for Gold and Gnew, as PN is 
interpreted on Gnew only.  

7.4.3 Rule Formalism 
Harnessing the strength of CPs, a powerful rule-based automation formalism can be 
defined. Without going into details of how the reactions themselves are defined, such a 
rule can be characterised by a guard that is a CP; after a change to the model, the 
actions associated with the rule are executed for each match of the guard. In 
publications by the authors in the field of model transformation, such a rule was 
referred to as Change-driven Rule (CDR).  
Relying on technologies developed for model transformation purposes (incremental 
pattern matching), CP can be detected efficiently. Consequently, a rule-based system 
specified by CDRs can be executed in an efficient way.  

In the context of Security Engineering, the Evolution Rules envisioned in Section 7.1 
can be formalized as CDRs, lending both efficiency and expressivity to the approach. 
The Condition part of the Evolution Rule expresses constraints on the current (after) 
state, therefore it is formalized the PN part of the CDR. The appearance and 
disappearance Events are formalized as change queries in P+* and P-*, respectively. 
Finally, the Action is associated with the CDR (which was not formally defined in 
Section 7.4.2) 
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7.5 Examples of evolution rules 
We now demonstrate the power of the language by showing how a certain issue that 
arises in evolving requirements models can be addressed by evolution rules. 

In an evolving requirements model, new actors may be introduced, delegation and trust 
relationships may be changed, all raising security concerns. When an actor is taking 
over the responsibility (delegation) of a security goal previously achieved by a different 
actor, a problematic situation may arise if other actors do not have trust in the new 
setup. The same hold for delegating other entities (e.g. assets) instead of goals. 
Basically, intervention is required in situations when an actor delegates some 
responsibility (e.g. a security goal) to another actor, but does not trust the other one 
with the same object.  

The appropriate reaction can range from logging the event, raising a warning or 
initiating an argumentation that will be finished by security engineers, to automatic 
intervention like creating the missing trust relationship, depending on policy. The 
reaction might depend on how such an undesired state of the model was produced.  

To illustrate the capabilities of the evolution rule formalism, we first design a graph 
pattern to express the undesired configuration, and then we draft three alternative 
solutions with evolution rules to intervene in these situations.  

7.5.1 Graph pattern for expressing the problem 
Figure 8 visually depicts the graph pattern (with a negative condition) that 
characterizes this undesired configuration of elements.  

In a match of the pattern, the (positive) pattern variables Act1, Act2, Obj, Del will be 
mapped to entities in the model. Act1 will be substituted for an entity of type Actor that 
delegates the responsibility of an entity Obj to the actor Act2 using the delegation 
relationship Del; where at the same time, there is no trust relationship Tru such that 
Act1 trusts Act2 over Obj.  

 
Figure 8. The undesired pattern: untrusted delegation 

7.5.2 Solution 1: one rule per elementary change 
The first solution would be to create several evolution rules, one for each possible 
elementary change that can complete the pattern and make an intervention necessary. 
In this case, two kinds of elementary changes can trigger the rule: the detection of a 
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newly added “delegation” relationship between two actors (and the dependum), or the 
deletion of an actor-actor trust (over a dependum).  

Both changes can be captured by the Event part of a separate evolution rule 
(appearance event in the former case, disappearance in the latter). The condition part 
is required to determine whether the change actually completes the pattern: when a 
delegation appears, the non-existence of a trust with the same dependum will have to 
be checked; when a trust disappears, the existence of the delegation with the same 
dependum will have to be checked. The Action creates an argument prototype (i.e. a 
placeholder), connected to the violated security goal, to discuss the problem. 
Engineers will have to manually finish the argument with domain-specific knowledge, or 
fix the problem. Additionally, the Action contains a simple logging statement; observe 
how the two different cases can be handled differently. The following pseudo code 
listing describes these two evolution rules; syntax is not final. 
evolution rule UntrustedDelegation1 { 

 variables = (Act1, Act2, Del, DD, Tru, TD, Obj, Arg, AP); 

 event = appear { 

  entity Actor(Act1); 

  relation Actor.delegates(Act1-DelAct2); 

  entity Actor(Act2); 

  Actor.delegates.dependum(Del—DD->Obj); 

  entity Object(Obj); 

 } 

 condition { 

  no (Tru, TD) such that { 

   relation Actor.trusts(Act1-TruAct2); 

   relation Actor.trusts.dependum(Tru—TD->Obj);  

  } 

 } 

 action { 

  log “Delegation created without supporting trust: $Act1-$Obj-$Act2”; 

  create entity Argument(Arg); 

  create relation Argument.supports(Arg—AP->Obj); 

 } 

} 

evolution rule UntrustedDelegation2 { 

 variables = (Act1, Act2, Del, DD, Tru, TD, Obj, Arg, AP); 

 event = disappear { 

  entity Actor(Act1); 

  relation Actor.trusts(Act1-TruAct2); 

  entity Actor(Act2); 

  relation Actor.trusts.dependum(Tru—TD->Obj); 

  entity Object(Obj); 

 } 
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 condition {  

  relation Actor.delegates(Act1-DelAct2);  

  relation Actor.delegates.dependum(Del—DD->Obj); 

 } 

 action { 

  log “Removal of trust threatens delegation: $Act1-$Obj-$Act2”; 

  create entity Argument(Arg); 

  create relation Argument.supports(Arg—AP->Obj); 

 } 

} 

7.5.3 Solution 2: single coarse-grained rule 
The change query formalism introduced in this chapter allows the detection of changes 
that are defined by multiple predicates. This results in the capability of change queries 
to observe the appearance (or disappearance) of a complex pattern, regardless what 
the last elementary change was that completed the pattern. 

In this case, the entire undesirable pattern can be captured in an appearance event of 
a single evolution rule; whenever the undesired pattern appears, the evolution rule will 
fire, independently of the order of operations that eventually resulted in the appearance 
of the pattern. This enables us to formulate the solution much more concisely; in this 
simple example, even the Condition part could be discarded. 
evolution rule UntrustedDelegation { 

 variables = (Act1, Act2, Del, DD, Tru, TD, Obj, Arg, AP); 

 event = appear { 

  entity Actor(Act1); 

  relation Actor.delegates(Act1-DelAct2); 

  entity Actor(Act2); 

  Actor.delegates.dependum(Del—DD->Obj); 

  entity Object(Obj); 

  no (Tru, TD) such that { 

   relation Actor.trusts(Act1-TruAct2); 

   relation Actor.trusts.dependum(Tru—TD->Obj);  

  } 

 }  

 condition {} 

 action { 

  log “Untrusted delegation: $Act1-$Obj-$Act2”; 

  create entity Argument(Arg); 

  create relation Argument.supports(Arg—AP->Obj); 

 } 

}  
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This kind of concise solution is much quicker to develop and understand. Development 
also becomes less error-prone, as the rule designer does not have to manually take 
care of all possible elementary changes that can result in the appearance of the 
complex pattern; the previous solution would have been insufficient if the rule 
UntrustedDelegation2 had been accidentally omitted. The disadvantage is that the 
same Action part is executed regardless of the last elementary change that triggered 
the rule; if some cases do require special action, than more evolution rules should be 
used with an event granularity that is just enough to distinguish the relevant cases. 

7.5.4 Solution 3: automatic problem correction  
Apart from logging the detection of the pattern and reusing an argumentation, evolution 
rules can also correct problems present in the model. The difficulty of this approach is 
that often there is more than one way to remedy an issue, and the decision is hard to 
automate. For instance, the problem in this example can be solved by adding a missing 
trust relationship; or by removing the delegation (and probably implementing something 
else in its place). Both are valid ways to handle the issue, but engineers should select 
manually which one should be applied in each concrete case. To achieve this, we 
introduce two alternate evolution rules that implement these two reactions. Together 
with the rule UntrustedDelegation of Solution 2 introduced in Section 7.5.3, they 
provide three options that can be automatically offered to the engineers to choose 
from.  

Note that the three rules can reuse each other’s Event parts for more concise 
specification. Once again, the syntax is not final. 
evolution rule UntrustedDelegation_AddTrust { 

 variables = (Act1, Act2, Del, DD, Tru, TD, Obj); 

 event = UntrustedDelegation.event 

 condition {} 

 action { 

  log “Resolving untrusted delegation ($Act1-$Obj-$Act2) by adding 
missing trust link”; 

  create relation Actor.trusts(Act1—Tru->Act2); 

  create relation Actor.trusts.dependum(Tru—TD->Obj); 

 } 

} 

evolution rule UntrustedDelegation_RemoveDelegation { 

 variables = (Act1, Act2, Del, DD, Tru, TD, Obj); 

 event = UntrustedDelegation.event 

 condition {} 

 action { 

  log “Removing untrusted delegation: ($Act1-$Obj-$Act2)”; 

  delete relation DD; 

  delete relation Del; 

 } 

} 
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Where applicable, evolution rules can directly manipulate the model to automate the 
solution of common problems. Some of the change patterns introduced in D2.1 can be 
considered as possible candidates for being automated with evolution rules.  

7.5.5 Discussion  
None of the above rules deal with the disappearance of the undesired pattern. 
Depending on policy, additional rules may have to be defined to react to security 
problems being solved, as the actions of the other evolution rule (e.g. placing a 
warning marker or creating an argumentation placeholder) may have to be undone or 
compensated.  

The example presented in this section shows how the goals in Section 7.1 can be 
satisfied using the proposed formalism for evolution rules: 

• the untrusted delegation was captured as a complex structural property 

• a change event detecting the change of this complex property was defined 

• the formalism is general enough to be refinable for domains or scenarios 

• the rules can take appropriate domain-specific actions 

• these reactions include user interaction (logging in this example) and the 
modification of a model (creating the argument placeholder, creating, removing 
the delegation)  
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8 Application of the Methodology 

This section illustrates through an example from the ATM case study the different steps 
of SeCMER methodology. 

8.1 Requirement model example 
First we show how we can represent the evolution of requirements that characterize 
the ATM case study by instantiating the conceptual model presented in Section 4. 
Some of these arise from the change of domain properties which are not controlled by 
the system designers, while others arise from the change of optative properties or 
functional and security goals.  

In this example, we show how functional and security goals of the actual ATM systems 
change due to the introduction of the AMAN queue management tool that supports 
ATCOs and of the SWIM, a IP based communication network. 

 

 
Figure 9. The “before” requirements model 

Figure 9 represents the requirement model before the introduction of the AMAN. The 
main actors are the Sector Team at the destination airport composed by the Planning 
and the Tactical Controller, the CWP, and the dedicated communication lines 
(telephone, radio communications).  The flight arrival management operations are 
performed by the Sector Team (Tactical and Planning Controllers) that has to compute 
the arrival sequence for the flights and give clearances for landing to the pilots flying in 
their sector on the basis of the information displayed by the CWP such air traffic, radar 
data, monitor displaying inbound/outbound traffic planned for the sector, telephone 
switchboards, airlines and airport operators preferences or priorities about arrival 
runways. Communications between different ATM actors take place over dedicated 
and secure radio communications lines.  
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In this scenario, the security goals are associated with the CWP and the 
Communication Lines that shall protect flight data info from unauthorized access.  

8.2 Evolution example 
 

 
Figure 10. The “after” requirements model 

 
As an effect of the introduction of AMAN, ATM systems go under architectural, 
organizational, and operational changes. At architectural level, the AMAN supports the 
Sector Team by providing sequencing and metering capabilities for a runway, airport or 
constraint point, the creation of an arrival sequence using ‘ad hoc’ criteria, the 
management and modification of the proposed sequence, the support of runway 
allocation at airports with multiple runway configurations, and the generation of 
advisories for example on the time to lose or gain, or on the aircraft speed. At the 
organizational level, the introduction of the AMAN requires the introduction of a new 
type of ATCO, called Sequence Manager, who will monitor and modify the sequences 
generated by the AMAN and will provide information and updates to the Sector Team. 
At the operational level, on one side the AMAN interacts with the FDP, CNS, and 
Meteo services to collect the Airport Operators priorities for runaways usage the 
Airlines priorities in terms of flight arrivals, the Meteo condition, and the aircraft position 
that it uses to compute an ad hoc arrival sequence or to generate advisories. On the 
other side, the AMAN interacts with the Sequence Manager and the Sector Team 
through their CWPs monitor. The Sequence Manager can check the arrival sequence 
and the advisories generated by the AMAN, and if necessary can modify them, while 
the Sector Team ATCOs can only view them. Based on the information provided by the 
AMAN, the Sector Team gives clearances to the pilots flying in its sector. The 
communication between the different ATM actors is based on the SWIM, an IP based 
data transport network that will replace the current point-to-point connections systems.  
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In this scenario, the SWIM actor has replaced the communication lines actor and it has 
the security goal of protecting the data flight information from unauthorized access. 
This security goal is denied by the fact that attacker carries out a man in the middle 
attack and so the trust relation between the SWIM and the CWP is replaced by a 
delegates relation (see Figure 10). 

8.3 Argumentation for security properties 
The argumentation analysis for security goals usually consists of three types of steps. 
Claims are to establish the satisfaction of the security goals using the facts and domain 
knowledge rules available in an elicited requirements model. On the other hand, while 
the requirements model evolves along with change in the world, additional facts and 
domain knowledge rules may refute the argument for the satisfaction claims. Such 
rebuttals must be handled properly, by revisiting the facts and domain knowledge rules 
in the model, or by finding additional facts and domain knowledge rules for their 
mitigations. These three steps can be applied to any state of the requirements model, 
and they can interleave with the application of evolution rules in the iterative SeCMER 
process.  

Rebuttals. During the argumentation analysis, the “before” scenario was observed 
insecure by the rebuttal that the changes introduced into the system could deny the 
security goal. The newly acquired domain knowledge “A man-in-the-middle attack 
happened to the communication lines could distort the data flight information from an 
unauthorized access”, which violates the security goal of the SWIM actor: “the data 
flight information are protected from unauthorized access”. This rebuttal is confirmed 
by the argumentation analysis, which can be generalized into the following pattern 
“delegates information to an actor through a shared communication process” and “the 
communication process may be shared with actors not trusted”.  

Mitigations. The next step during the argumentation analysis is to find mitigations to 
the rebuttal. One type of mitigation is to reassess the risks associated with the facts 
and domain knowledge raised by the rebuttals and reject a change when the risk is 
low. However, this is not the case in the example. The risk of exposing the data link to 
malicious attackers is high if no mechanisms are introduced to protect the secure 
transmission of data flight information. Therefore, the change to the communication line 
is proposed “to encrypt the data in transmission by the sender and decrypt it by the 
receiver end”. The domain knowledge that “it is difficult for untrusted eavesdropper to 
decrypt the data flight information” assures that the new system with the encryption is 
secure. The generalization of the mitigation step can be stated as follows: “if the before 
situation a delegates relation is untrusted and the communication is not encrypted, a 
change is needed to introduce encryption as the solution”.  

Alternatives. In fact, the argumentation process can continue, with the rebuttals on the 
previous mitigation suggests that the data encryption with poor strength key is still easy 
to be decrypted by attackers armed with password dictionaries. As a mitigation step to 
this, the maintained could introduce the change the “untrusted delegates relationship” 
into “trusted delegates relationships”, and introduce an additional requirement on “the 
delegatee actor shall be trusted” by using a key to access the lock in the control room. 
A generalization of this mitigation is to add “obligatory actions” to the trusted delegatee 
actors and to avoid using the communication links through untrusted channels. 
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Automation. Security goals often push the system boundary to enclose emergent 
facts and domain knowledge, some argumentation analysis has to carried out 
interactively. On the other hand, conceptual model for argumentation makes it easier to 
turn the three types of modelled arguments into predicate logic formula that are 
checked using off-the-shelf reasoning tools [12].  

In the next subsection, we introduce several evolution rules that formally combine the 
events, conditions of the rebuttals and the actions of the mitigations. 

8.4 Deriving and using Evolution Rules 
In an evolving requirements model, new actors may be introduced, delegation and trust 
relationships may be changed, all raising security concerns. The ATM evolution case 
study is an example of this phenomenon: the new SWIM actor is introduced, taking 
over the responsibility of secure communication, but other actors such as CWP not 
necessarily trust it. This is exactly the problem that the step described in Section 7.5 
addresses; in the following, we will demonstrate how such evolution rules can be 
derived and applied in the concrete ATM example. 

In the previous subsections, we have explained how an informal argument is 
constructed, rebutted and mitigated on the elicited requirements models. In case the 
argumentation turns out to be (partially) mechanic, we can enumerate Event-Condition-
Action evolution rules where events and conditions are obtained from the rebuttals, and 
the actions obtained from the mitigations. 

To come up with the events and conditions, we first represent a part of the complete 
requirements model as a graph pattern. For example, when an actor delegates some 
responsibility (e.g. the security goal of the CWP actor to protect the data 
communication line from man-in-the-middle attack) to another actor (e.g., SWIM), but 
does not trust the latter with the same object (e.g., the data communication link). The 
graph pattern that characterizes the undesired configuration of elements was 
previously shown in Figure 8. In context of the ATM example, Act1 can be the Actor 
CWP, which delegates (through a delegation relation captured in variable Del) the Goal 
Receive (matching the variable Obj) to Actor SWIM (which will be Act2); this variable 
substitution is a match of the pattern as there is no trust relationship Tru between these 
two actors over this goal in the model.  

After assembling the graph pattern, the event and condition specifications will have to 
be derived from it. We can create several evolution rules, one for each possible 
elementary change that can complete the pattern and make an intervention necessary. 
This will produce an outcome similar to Solution 1 presented in Section 7.5.2. 
Alternatively, simpler and more concise rules can be used, similar to Solution 2 from 
Section 7.5.3, if the mitigation only depends on the after state, and not on the nature of 
the change itself.  

Regardless of the chosen approach, the action part can alert the argumentation 
engineers, or perform automated intervention by directly manipulating the model if the 
mitigation is close to deterministic. See Solution 3 from 7.5.4 as an example. Some of 
the change patterns introduced in D2.1 can be considered as possible candidates for 
being automated with evolution rules.  



 

 D.3.2 Methodology for Evolutionary Requirements | version 2.14 
| page 47/63 

 

The given solutions can be demonstrated by applying them on the example models 
that represent the before/after situations in the ATM domain.  Observing the After 
situation more closely, one can notice that contrary to the old communication system, 
the new SWIM system is not yet trusted by actors such as CWP and FDP. This may be 
a security issue, as the goals Send and Receice are now delegated to SWIM, which 
obviously requires trust. Fortunately, the example evolution rules presented in Section 
7 can be used to automatically detect untrusted delegations. For example, if we use 
the general evolution rules introduced earlier, they will be triggered for multiple 
individual matches by this example evolution. The rule matches the rule variables to 
actual substitutions that experienced the Event and satisfy the Condition. In one 
concrete match, Obj will be mapped to the goal Send, and Act1 will be mapped to FDP; 
in a second case, Obj will be the goal Receive and Act1 will be CWP; Act2 will be 
mapped to SWIM in both cases. Engineers will be able to choose from three options for 
each individual match: to fill in the missing trust link (this is the likely solution in our 
case), to abolish the delegation, or to build an argumentation explaining why there is 
no real problem.  

8.5 Interaction of argumentation and evolution 
rules 
As discussed before, there are several ways for the evolution rules and the 
argumentation process to interact. It is expected that the engineers responsible for the 
argumentation can define domain-specific evolution rules that automatically maintain 
some information related to the arguments in the model. In an ideal scenario, such 
automation could always identify which arguments should be manually revisited, and 
which are unaffected by a change in the requirements model. Of course in most cases, 
there is no need to revisit each argument; if the set of rules for flagging arguments is 
comprehensive, relying on this automated process can save manual effort.   

In this ATM example, an event that can trigger an automated response in relation to an 
argument can be the introduction of an attacker with an anti-goal against the “Prevent 
Unauthorized Access” goal of SWIM. In this case, the argument in support of the 
security goal should be flagged for manual re-evaluation. We show how argumentation 
experts using the evolution rule language of SeCMER can define such a rule: 
evolution rule AttackerInvalidates { 

 variables = (Atk, AG, SecG, Arg, W1, D1, S1); 

 event = appear { 

  entity Attacker(Atk); 

  relation Actor.wants(Atk–W1AG); 

  entity AntiGoal(AG); 

  relation AntiGoal.denies(AG-D1SecG); 

  entity SecurityGoal(SecG); 

 }  

 condition { 

  entity Argument(Arg); 

  relation Argument.supports(Arg-S1SecG); 
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  entity SecurityGoal(SecG); 

 } 

 action { 

  // flag argument as potentially invalid, notify argumentation team 

 } 

} 

Here is one example of iterative development of the argument triggered by the 
evolution rule. Typically such development is in the form of a dialogue. The first round 
of an informal argument might be: 

Initial claim:  
• The ATM system remains secure after introducing AMAN (C1). 

Initial facts:  
• The AMAN system is controlled by a new trustable operator called Sequence 

Manager (F1).  

• Sequence Manager reports to Sector Team about sequences (F2). 

• AMAN interacts with the FDP, CNS, and Meteo services to collect the Airport 
Operators priorities, the Airlines priorities, the Meteo condition, and the aircraft 
position (F3). 

• The actors are interconnected by the SWIM (F4). 

Initial domain knowledge rule:  
• If the members of the Sector Team obtain important information about the 

aircraft, information related to the aircraft position, for instance, the information 
may become available to a potential attacker. (DK1) 

Initial Rebuttals:  
• The Sequence Manager can have malicious intent due to social and 

psychological reasons (R1 on F1).  
• Members of the Sector Team obtain critical information not related to their tasks 

(R2 on F4). 
• Attackers eavesdrop on the SWIM network. 

 
Second round, one checks the R1 as a claim. Here is the supporting evidence for R1:  

• Each Sequence Manager has been through clearance to minimize the risk of 
being malicious F3=R1.1). 

• Role-based access control policies for Sector Team will stop members of the 
team accessing critical information not relevant to their tasks (F4=R1.2). 

 
Such argumentation can go on until all the facts and domain knowledge rules are 
refined so that all rebuttals of the root claim are not satisfiable. In other words, a 
satisfaction claim is justified as long as all the facts and domain knowledge are true 
(e.g., trust assumptions in arguing security goals) and all the rebuttals are false. A 
formal treatment of argumentation using non-monotonic proposition logic can be found 
in [12]. As one can see, the result of such argumentations would inevitably contribute 
to changes in the situations of security goals. 
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9 Conclusions 

In summary, this report describes a methodology for addressing evolutionary security 
goals. It is based on three interleaving steps: modeling, analysis and design. First, 
models of evolutionary security goals are elicited and generalized according to three 
conceptual models. Then, in the analysis step, the models are used to discover 
vulnerabilities. Finally, in the design step, requirement models are used to construct a 
traceability mapping into security constraints of design artifacts.  

These conceptual models are by no means an ultimate answer to the conceptual 
modeling framework for evolution of security goals. Rather, they can be considered as 
an extensible framework in which new concepts and practices in the field of evolving 
security goals engineering can be represented. 

We envisage that observations from our discussion may have important implications 
for research in secure software evolution. The main implication concerns approaches 
to secure change impact analysis. For example the observation that changing 
requirements may lead to changing specifications could lead to a framework for 
understanding the impact of changes and traceability of the changes through artifacts 
in both requirements and specifications. 

Similarly, such a change impact analysis framework could also be useful for analyzing 
the impact that changes in context may have on requirements and specifications. The 
change impact framework can be validated by doing more research on what the 
interaction is between the changes in W, S ├ R. Related to this, is the issue of scoping 
the impact of change on the system, when the system is large. 

As a result, the conceptual models presented will be considered together to shed some 
light on what is the more general representation of the meta-conceptual model, in order 
to facilitate the classification of changes, the change impact analysis, the 
transformations of the models, and the argumentation of satisfaction. Ultimately, 
security goals change patterns may be discovered, be documented and be reused 
from one case study to another. 
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Glossary 

A claim is a (probably grounded) 
predicate whose truth value will be 
established by an argument., 24 

A condition of situation is evaluated 
to be true for situations that 
require a change to maintain the 
security requirements. It may 
evaluate to false if the triggering 
events do not lead to any change. 
The condition must be monitored 
whenever a triggering event 
happens., 18 

A triggering event is a dynamic 
difference between two 
consecutive versions of a model 
that results in the activation of an 
evolution rule., 18 

An adaptation action is the change 
introduced to achieve or restore 
the maintenance conditions, which 
are, in the SecureChange context, 
the satisfaction of security 
requirements., 18 

An argument contains one and only 
one claim. It also contains facts and 
rules in domain knowledge, 24 

An evolution rule is a formal 
specification of automatic behavior 
in reaction to changes in the model, 
17 

Domain Knowledge is a set of 
ungrounded predicates that can be 
evaluated to true or false once the 
values of all terms in the predicates 
are known., 24 

DSML stands for Domain Specific 
Modeling Language., 2 

Dynamic Oriented Object Requirement 
System tools dedicated on 
Requirement Management. For 
further details see [21]., 57 

Facts are grounded predicates ‐‐ 
something that are either true or 
false where terms in these 
predicate must be constant, 24 

Transformation is the process of 
deriving models from each other, 
32 

Mitigations are another special kind 
of arguments following the 
iteration of rebuttals in order to 
reestablish the truth value of the 
associated claims, 24 

Rebuttals are a special kind of 
arguments whose purposes are to 
establish the falsity of their 
associate claims or make them 
indeterminable, 24 

situation, 17 

Targets are elements of physical layer 
specification (physical component, 
communication channel)., 59 

The argument may require sub­
arguments to establish the truth of 
certain facts or intermediate 
predicates, 24 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Appendix 1. State of the Practice 

In this section we present the Thales industrial method for security risk analysis, and 
we show the analogies with our methodology for security goals elicitation and analysis. 
Thales method aims at supporting the analysis and assessment of security risks for a 
system, and the specification of requirements for security measures to address those 
risks.  

1. The security risk analysis method: Principles  
Our prospective security risk analysis method builds upon model-based engineering 
methods and techniques. All activities of our method are organised around the building 
and usage of models, that is formalised, precisely defined, interconnected and 
integrated representations of the objects under study.  

As represented in Figure 11 our proposed method relies on the development of a 
modelling framework that combines in a synchronised way a set of models that 
constitute separate viewpoints [17] over the engineering problem: 

 
Figure 11.  The security analysis method in Thales context – big picture 

• The System architecture model contains the architectural design of the system; 
this model is developed within the mainstream engineering processes, along at 
least two dimensions: the functional/logical architecture of the system 
(functional capacities and data to be realised by the system) and the physical 
/implementation architecture of the system (actual hardware and software 
components that realise the functional capacities). 
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• The Business need model captures a representation of the business context for 
the system: business process that is supported, underlying business 
organisation, business objects, key performance indicators, strategic drivers, 
etc. 

• The Risk analysis model and security objectives model capture the results of 
the security risk analysis method that is proposed in dedicated DSML 
(presented in next section). These models include a representation of the 
system architecture that is relevant to the needs of the security analyst, this 
model is called context model. This model is traced back and maintained in 
synchronisation with the system architecture model (see [12]). The security risk 
analysis information is defined as annotations or related new concepts added 
over the system architecture elements. The risk analysis model and security 
objectives model may also be traced to elements of information defined in the 
Business need model. 

• The Requirement Database captures all kinds of systems requirements 
(Security, Safety, Maintainability, Cost, etc.). Security goals are derived from 
security objectives model of dedicated DSML (see [13]). This mapping enables 
to add security goals with other kind of requirement addressed for a complex 
system. Requirement Database is traced back and maintained in 
synchronisation with the system architecture model and Business need model.  

The System architecture model and the Business need model are part of architecture 
modeling framework that we are developing to address service-oriented types of large-
scale enterprise integration systems or systems of systems. In the Thales context, the 
official database of Requirement Management is Rational DOORS with the T-REK 
add-ons  [21]. 

2. DOORS T-REK 
Rational DOORS [21] (Dynamic Object Oriented Requirements System) provides: 

• A requirements Database that allows all stakeholders to participate in the 
requirements process 

• The ability to manage changing requirements with RCM Tools (Requirement 
Change Management) 

• Powerful life cycle traceability to help teams align their efforts with the business 
needs and measure the impact that changes will have on everything from 
business goals to development 

• Links requirements to design items, test plans, test cases and other 
requirements for easy and powerful traceability 

• Automatic generation of traceability matrix. 

• Automatic document generation of DOORS module into MS WORD format 
(.doc). 

As suggested by Figure , a DOORS project is composed by two kinds of modules:  
• Formal Modules gather requirements information and is used for Requirement 

Specification. One Requirement is considered as one object which contains a 
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set of attributes (standard attributes are Object Identifier, Object Heading and 
Object Text). It’s possible to filter some attributes in views.  

• Link Modules gather links information. Links module contains a set of Linksets 
which represent link information between two Formal Modules. 

 
Figure 12.  DOORS project structure 

 

T-REK (Thales Requirement Engineering Kit) is an over-layer of DOORS which 
enables to distinguish different kinds of Formal Modules and Link Modules. T-REK 
offers a Relationship Manager to represent a project structure and relations between 
different formal modules: we call it a Datamodel. In a simplified Datamodel as shown 
by Figure 12 we distinguish: 

• Requirement Module, which represents Requirement Specification Document 
(it’s possible to distinguish User Requirement Specification and System 
Requirement Specification). The link between this kind of module corresponds 
to “satisfies” link. 

• Integration, Validation, Verification (IVV) Module, which gathers integration and 
tests campaign information (e.g. Test Result, Expected Test Method ...). IVV 
modules are linked with Requirement module by a “verifies” link. 

• Product Breakdown Structure (PBS) Module, which contains all subsystems or 
components (depending on project granularity) and all related information (e.g 
kind of component software, hardware ...). Components/Subsystems are 
represented by a DOORS object. Requirements modules are linked with PBS 
modules by a “is allocated to” link. 
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Figure 13.  Simplified Datamodel in T-REK 

 

Risk are not represented in Standard T-REK Datamodel, this is why we plan to connect 
our DSML based on Risk analysis with DOORS T-REK. 

3. Application in Thales Requirement Workbench 
This deliverable cannot be the place for a detailed presentation of the conceptual 
model and syntax of DSML. We are providing below representative extracts. More 
details are provided in [17]. The core part of the conceptual model4 is represented in 
Figure 14.  

The system under analysis is considered to hold targets and essential elements. 
Targets are physical elements subject to risk 

Key elements are usually more logical, functional elements: data and functions (or 
services, or capabilities depending on context) that are essential to the business stakes 
of the company, and therefore subject to security needs. Key elements depend on 
targets for their implementation.  

Requirements and Objectives are allocated to Essential Element and/or Target. To 
ensure risk traceability, Objectives and Requirements must cover Risk(s). Objective 
must be more general than Requirement, and to preserve traceability between those 
concepts, we consider a bidirectional association named “satisfies” between them. 

                                                        
4 For readability sake, it is represented in the form of a conceptual model rather than a formal conceptual 
model. 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Figure 14.  Conceptual model of Security Objectives and Requirements in 

Security DSML 

 

In current Security DSML, we distinguish three kinds of static models5 as shown by 
Figure 15: 

• The Requirement Model describes the specialization of Objectives into several 
Requirements and links between those and the other elements of DSML (Risk, 
Context). 

• The Context Model describes System Architecture (Essential Elements and/or 
Target), related constraints and links between those and the other elements of 
DSML (Risk, Requirement). 

• The Risk Model describes the risk characterization into threats, damages and 
vulnerabilities and links between those and the other elements (Risk, Context). 

 

                                                        
5 The connectors between entities are not represented here for readability sake 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Figure 15.  Security DSML Static Model description 

 

Figure 16 shows how to realize the mapping between Thales Security DSML (or Other 
DSML for Need Analysis) and DOORS T-REK, to do this we must consider a 
Traceability relation between Security Goal of Security DSML and DOORS 
Requirements.  

This relation enables to connect other kind of requirement (Safety, Maintainability, 
Cost, etc.) with Security Goals expressed in DSML. Requirements are stored in a 
common requirement Database (DOORS Database). This communication is realized 
via a Model Bus (Bidirectional interface XML to DXL6) for Traceability needs between 
DOORS and Security DSML. 

 

                                                        
6 DXL (DOORS Extended Language) is the native language of DOORS 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Figure 16.  Mapping between DSML and DOORS 

This connection enables to represent risk defined in DSML into a requirement attribute 
(Related Risk) and to connect Related Threat and Vulnerability into a component 
attribute. It’s so possible to represent risk into DOORS objects. 

Figure 16 presents the extended conceptual model including DOORS connections. 
Two kinds of entities are mapped with DOORS: Requirements and Target that are 
respectively represented by Requirement and Product Breakdown Structure object in 
DOORS. To ensure traceability between DSML and DOORS, we add a PUID (Product 
Unique IDentifier) attribute, PUID is the reference name of a DOORS object. 

 
Figure 17.  Extended Conceptual model including DOORS connections 



 

 D.3.2 Methodology for Evolutionary Requirements | version 2.14 
| page 62/63 

 

Figure 18 depicts the properties view on Security Objective O6 (Identifiers should be 
chosen so that they do not compromise user‘s privacy). Figure  19  presents the 
requirement derived from security objective in DOORS. 

 
Figure 18.  Close view on the Security Objectives  

 

Figure 19.  Derived Requirements expressed in DOORS 

The information of target can be consulted in the Properties View (Description, 
constraints applied on it), as can be seen in Figure 20. This properties view of Target is 
also defined in DOORS as shown by Figure 21. 
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Figure 20. Properties of the Database Server in DSML 

 

Figure 21.  Database Server description in DOORS 

 


