

D5.2 Documentation of forecasts of future
evolvement

Mass Soldal Lund, Bjørnar Solhaug, Ketil Stølen (SIN), Ruth Breu,
Michael Breu, Frank Innerhofer-Oberperfler (UIB), Edith Felix,
Benjamin Fontan (THA), Alessandra Tedeschi (DBL), Elisa Chiarani
(UNITN)

Document information

Document Number D5.2

Document Title Documentation of forecasts of future evolvement

Version 1.0

Status Final

Work Package WP 5

Deliverable Type Report

Contractual Date of Delivery 31 January 2010

Actual Date of Delivery 25 January 2010

Responsible Unit SIN

Contributors SIN, THA, UIB, DBL, UNITN

Keyword List Evaluation, language, risk analysis, evolving
systems

Dissemination level PU

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 2 / 61

Document change record

Version Date Status Author (Unit) Description

0.1 14.09.09 Draft Mass Soldal Lund

(SIN)

Outline

0.2 30.10.09 Draft Mass Soldal Lund

(SIN), Alessandra

Tedeschi (DBL)

Updated outline, first

draft validation scenario

0.3 07.11.2009 Draft Mass Soldal Lund,

Ketil Stølen (SIN),

Ruth Breu,

Michael Breu

(UIB), Edith Felix,

Benjamin Fontan

(THA), Alessandra

Tedeschi (DBL)

Updated structure

First draft of meta-model

Updated validation

scenario

0.4 16.11.2009 Draft Michel Breu (UIB) Draft of Section 4.3

0.5 04.12.2009 Draft Benjamin Fontan,

Edith Felix (THA)

Draft of Section 4.2

Extensions to Security

DSML, Update of Section

3.1 Alignment of

Approach

0.6 22.12.1009 Draft Mass Soldal Lund,

Bjørnar Solhaug,

Ketil Stølen (SIN)

Restructuring and new

contents in Sections 2 and

3

0.7 24.01.2010 Pre-final Mass Soldal Lund,

Bjørnar Solhaug,

Ketil Stølen (SIN),

Elisa Chiarani

(UNITN), Frank

Innerhofer-

Oberperfler (UIB)

First quality check,

Internal review, Removed

Section 5 (validation),

Added Executive

summary and Sections 1,

4.1 and 5.

1.0 25.01.2010 Final Mass Soldal Lund,

Ketil Stølen (SIN),

Elisa Chiarani

(UNITN)

Final quality check

completed, minor

corrections, proof reading

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 3 / 61

Executive Summary

A risk analysis typically focuses on a particular configuration of the target at a particular
point in time, and is valid under the assumptions made in the analysis. However, both
the risk analysis target and its environment can change and evolve over time. We
therefore need methods and techniques to reflect such changes in the risk analysis.
This deliverable is concerned with the development of modelling support for risk
analysis of changing and evolving systems; in other words, language support for
modelling a changing and evolving risk picture.

How we handle changes in a risk analysis depends to a large degree on the context
and the types of changes we are dealing with: Are the changes the results of
maintenance or of bigger, planned changes? Are the changes a transition from one
stable state of the target to another or the continuous evolution of a target designed to
change over time? Do the changes occur in the target or in the environment of the
target? The answers to such questions decide how we handle the changes.

In a conceptual clarification of the domain of risk analysis of changing and evolving
systems three perspectives of change have been identified:

• The maintenance perspective, where an old risk picture is updated after the old
analysis target has been updated.

• The before-after perspective, where a risk picture of future changes of an
analysis target is made based on a risk picture of the current analysis target.

• The continuous evolution perspective, where a risk picture is generalized to
capture evolution of risks as the analysis target evolves.

For each of these perspectives a work process, a conceptual model and language
requirements are developed. Based on this, generic language extensions that provide
language support for each of the perspectives are formalized. The conceptual model,
the language requirements and the generic language extensions are developed in a
general manner and such that they may be applied to a large range of existing
languages for risk modelling.

The proposed approach is then demonstrated by instantiating the general language
support for three concrete risk modelling languages. This way we obtain three concrete
risk modelling languages extended with full or partial support for risk analyses of
changing and evolving systems. One of the languages is extended by instantiated the
generic language extensions, while two of the languages are extended by refining and
instantiating the conceptual models.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 4 / 61

Index

DOCUMENT INFORMATION 1

DOCUMENT CHANGE RECORD 2

EXECUTIVE SUMMARY 3

1 INTRODUCTION 6

2 CONCEPTUAL CLARIFICATION 8

2.1 Perspectives on Change 8

2.2 Kinds of Change 9
2.2.1 Changes in the Target Description 10
2.2.2 Changes in our Knowledge 13
2.2.3 Process of Change 13

2.3 Summary of State-of-the-Art 13

3 GENERIC LANGUAGE EXTENSIONS 15

3.1 Abstract Syntax 16
3.1.1 Example: Fault Trees 18

3.2 Maintenance Perspective 19
3.2.1 Work Process 19
3.2.2 Conceptual Model 20
3.2.3 Language Requirements 21
3.2.4 Generic Extensions 22

3.3 Before-After Perspective 23
3.3.1 Work Process 23
3.3.2 Conceptual Model 25
3.3.3 Language Requirements 26
3.3.4 Generic Extensions 26

3.4 Continuous Evolution Perspective 27
3.4.1 Work Process 27
3.4.2 Conceptual Model 28
3.4.3 Language Requirements 29
3.4.4 Generic Extensions 30

4 INSTANTIATIONS OF GENERIC EXTENSIONS FOR CONCRETE
LANGUAGES 32

4.1 Instantiations for the CORAS Language 32

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 5 / 61

4.1.1 The CORAS Risk Modelling Language 32
4.1.2 Instantiations for the Maintenance Perspective 34
4.1.3 Instantiations for the Before-After Perspective 36
4.1.4 Instantiations for the Continuous Evolution Perspective 39

4.2 Instantiations for Security DSML 42
4.2.1 Enhancing System Security Engineering in Thales 42
4.2.2 Security DSML: Overview 44
4.2.3 DSML Extension: Change Model 47

4.3 Instantiations for ProSecO 52
4.3.1 ProSecO and its View on Change 52
4.3.2 Explicit Handling of Change in the ProSecO Meta Model 54

5 CONCLUSIONS 57

APPENDIX: GLOSSARY 58

REFERENCES 60

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 6 / 61

1 Introduction

A risk analysis typically focuses on a particular configuration of the target at a particular
point in time, and is valid under the assumptions made in the analysis. However, both
the risk analysis target and its environment can change and evolve over time. We
therefore need methods and techniques to reflect such changes in the risk analysis.
This deliverable is concerned with the development of modelling support for risk
analysis of changing and evolving systems. In other words: language support for
modelling a changing and evolving risk picture. This language support is given in the
form of generic language extensions that may be instantiated in existing approaches to
risk modelling.

How the system that is the target of analysis changes and evolves will obviously
influence the changing and evolving risk picture that we seek to capture.
However, system analysis and system modelling is the concern of Work Package 4 of
the SecureChange project and this deliverable does not provide the language support
for modelling the changing and evolving system.

We relate to the system analysis and modelling work of Work Package 4 – and
indirectly to the work on changing and evolving requirements of Work Package 3 – by
making high level assumptions concerning the system modelling and by defining
mappings that connect our models of the risk picture to system models. The relations
between the work of Work Packages 3, 4 and 5 are illustrated in Figure 1.

Changing and

evolving system

Changing and

evolving risk

picture

Changing and

evolving

requirements

WP3 WP4

WP5

Mapping

WP5

Figure 1 Relations between WP3, WP4 and WP5

In this deliverable we attack the challenges of modelling a changing and evolving risk
picture from a predominantly top-down viewpoint. We start out by providing conceptual
clarifications in Section 2, where we characterize and clarify the domain what we are
working in. In that section we discuss different perspectives on change within the
domain of risk analysis and different kinds of change that can affect the analysis
results.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 7 / 61

In Section 3 we go into detail on the perspectives. For each of them we sketch the
work process of conducing risk analysis within the perspective and provide a
conceptual model for the perspective. Based on the work process and the conceptual
model we specify requirements to the language support of the perspective and
formalize generic language extensions by means of an abstract syntax.

The idea is that, given a risk modelling language, the language support for a
perspective can be obtained by implementing the generic language extension in that
particular language. In Section 4 we demonstrate this with three different risk modelling
languages: the CORAS language, Security DSML and ProSecO. With respect to the
CORAS language, the implementation of the generic language extensions is done by
means of instantiating the abstract syntax of the language extension. With respect to
Security DSML and ProSecO, the implementation of the language extensions is
obtained by refining and instantiating the conceptual models of the perspectives.

In Section 5 we provide conclusions and in the appendix we provide a glossary of risk
analysis terms.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 8 / 61

2 Conceptual Clarification

How we handle changes in a risk analysis depends to a large degree on the context
and the types of changes we are dealing with: Are the changes the results of
maintenance or of bigger, planned changes? Are the changes a transition from one
stable state of the target to another or the continuous evolution of a target designed to
change over time? Do the changes occur in the target or in the environment of the
target? The answers to such questions decide how we handle the changes. We
therefore start by presenting three perspectives of change in risk analyses in Section
2.1, and different kinds of change relevant for risk analyses in Section 2.2. In Section
2.3 we summarize the state-of-the-art on risk modelling presented in [18].

2.1 Perspectives on Change
As stated above, the context of the changes is of importance for what kind of approach
we choose for dealing with the changes in risk analysis. There are two dimensions to
what we define as the change perspective. The first is whether the change was
planned or not, i.e. if the risk analysis is pro- or re-active. The second dimension is
captured by the concepts of evolution and revolution:

– Evolution: Smaller changes that accumulate over time. Bug fixes and upgrades
of computer systems are typically an evolution.

– Revolution: Major changes that have large effects on the target. The rollout of a
new system is a typical example of a revolution.

Using these two dimensions, we identify three different viewpoints or perspectives on
change:

1. The maintenance perspective (a posteriori perspective): Sometimes the target
evolves over time, changes accumulate unnoticed, and risk analysis
documentation and results may become outdated. An outdated risk analysis
may give a false picture of the risks associated with the target and when
changes occur we may need to conduct a new risk analysis. Conducting a risk
analysis from scratch is expensive and time-consuming, and we would rather
like to update the documentation from the risk analysis that we have already
conducted. In terms of the dimensions defined above, the maintenance
perspective is a reactive evolution.

2. The before-after perspective (a priori perspective): We often plan and anticipate
changes, and major changes to the target may even be the motivation for a risk
analysis. Such planned changes require special treatment for two reasons:
First, it is very important to have a clear understanding of what characterizes
the target “as-is” and what characterizes the target “to-be”, and of what are the
differences between these two. Second, the process of change may itself be a
source of risks. In terms of the perspective dimensions, before-after is proactive
revolution.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 9 / 61

3. The continuous evolution perspective: There may be cases where we plan for
the target to evolve over time or where we can anticipate gradual changes, e.g.
if we plan to gradually increase the number of components working in parallel, if
we plan to gradually include more and more sites into a system if we anticipate
a gradual wear of hardware over time, or if we foresee an increase in users of a
system or the number of attacks by an adversary. What is common to such
cases is that the target can be described as a function of time. Obviously then,
it would be a benefit if we could also do a risk analysis that is a function of time.
Such a risk analysis would give a risk picture not for one or a few, but for any
future point in time. In terms of the perspective dimensions, the continuous
evolution perspective is proactive evolution.

1

2

3

Figure 2 Relation between dimensions and perspectives

The relation between the dimensions and perspectives are illustrated in Figure 2.
When it comes to the last combination of the perspective dimensions, reactive
revolution, this would be a large unforeseen change that necessitates a completely
new risk analysis, and is therefore not considered further in this document.

2.2 Kinds of Change
In a risk analysis, information is collected and organized to describe the target of
analysis and its environment. The scope and focus of the analysis is furthermore
characterized, defining the parts of the system that are most relevant to the analysis.
Together, such information serve as the input to the analysis, and the risk analysis
results are derived from this input through a risk analysis process. Any change in this
information may therefore cause changes in the outcome of the risk analysis. We refer
collectively to the information that forms the input to a risk analysis as the target
description. The class diagram of Figure 3 shows the elements of the target description

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 10 / 61

and the relations between them. In this subsection we explain each of these elements,
and we also explain how changes to any of them may result in changes in the resulting
risk picture.

1

1..**

Target of

analysis

Scope Focus

Assumption

Asset

Party

1..**

11

part of

1..*

within

Environment

Context

*

111

*

1 1

Target description

1

Figure 3 Target description

In addition to changes in the target description a current risk picture may need to be
updated because we have gained new or better information about the target or its
environment. Taking this into account we can therefore distinguish between two main
categories of change, namely (i) changes in the target description and (ii) changes in
our knowledge about the target and its environment. In the following, we take a closer
look at relevant kinds of changes of the target description in Section 2.2.1 and at
changes in our knowledge in Section 2.2.2. Moreover, the process of changing the
target may itself be a source of risks, which is discussed in Section 2.2.3.

2.2.1 Changes in the Target Description

2.2.1.1 Target of Analysis

The target of analysis is the system, organization, enterprise, etc. or parts thereof, that
is the subject of the analysis. Changes to the target must be expected, even in what we
would consider a stable system. Consider for example bug fixes distributed from third
party software vendors. Another obvious example of changes to the target is
implementation of treatments identified in a risk analysis. But changes may also be
more extensive, such as introduction of new functionality in a software system or
replacement of software components, work processes or hardware components. We
allow full generality when defining the target, and changes to the target may be as
general as the target itself. It is therefore necessary to characterize in more detail what

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 11 / 61

changes to the target may constitute. In all, we distinguish between four main kinds of
changes to the target of analysis:

1. Changes to the functions/functionality of the target: This represent changes to
all physical or logical parts of the target that exhibit relevant behaviour. This
may be computer hardware and software, but also mechanical and moving
parts.

2. Changes to the non-functional properties of the target: This includes, among
other things, changes to security mechanisms and safety systems, and
introduction of barriers.

3. Changes to the processes of the target: There are often work processes
associated with the target. These may be of equal importance to the risk
analysis as the components of the target, and changes to the processes must
be considered changes to the target. Such changes also include organisational
changes that may be of relevance.

4. Changes in policies associated with the target: Policies restrict the functionality
and the processes of a system. This means that changes in policies may be of
equal relevance to the risk analysis as changes to the components or the
processes of the target.

2.2.1.2 Scope and/or Focus

The scope of the analysis defines the extent or range of the target of the analysis. The
scope defines the border of the analysis, i.e. what is held inside of and what is held
outside of the analysis, or in other words, what is considered to be part of the target of
analysis and what is considered to be part of the target’s environment. The focus, on
the other hand, defines the main issue or central area of attention in the risk analysis. It
is clear that the focus is defined within the scope of the analysis.

Any change in the focus and/or scope will almost inevitably result in changes in the risk
analysis and thereby outdate any existing risk analysis results and documentation.
Change of scope or focus may obviously be relevant also for cases in which the
system or environment in question has not undergone changes, since a client or other
stakeholders may wish to gain knowledge of the risks in a wider setting or with a
different focus. However, change of focus or scope is particularly relevant for changing
and evolving systems. If functionality is changed, services are substituted, new groups
of end-users emerge, other interfaces are introduced, etc., it may often be that the
focus and/or the scope of the analysis must be reconsidered in order to derive a more
relevant and up to date risk picture.

2.2.1.3 Environment

It is not only changes to the target of analysis itself that may affect and outdate risk
analysis documentation and results. There can be changes to the world outside the
boundaries of the target that might be of equal or even greater relevance for the risk
picture of the target.

The environment of the target may be anything in the surroundings of the target that is
relevance and that may affect or interact with the target; in the most general case the
environment is the rest of the world. One specific change of the environment is that a

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 12 / 61

new kind of threat emerges or that a threat disappears or is no longer relevant for the
risk analysis. Obvious examples of new threats (in a computer security setting) are the
invention of new kinds of computer viruses or hacker attacks. On a higher level, the
emergence of electronic warfare and cyber crime are other examples.

Another kind of change in the environment is changes in the likelihood of threat
scenarios due to changes in external factors. An example of this is threat scenarios
involving blackouts. The likelihood of such threat scenarios may be dependent on
stability of external power supply, so if there are changes in the reliability of the
external power supply, the likelihood of the threat scenarios might change.

2.2.1.4 Assumptions

Sometimes it is not changes to the target or its environment that triggers the need for
changes in the risk analysis results, but changes to the assumptions made in the
analysis. There are several reasons why we might want to change the assumptions
after completion of a risk analysis, and most often changes in the assumptions means
that we also do changes to the scope of the analysis. It might be that parts of a system
were assumed to be secure and for that reason kept outside the target of the analysis,
but that we later get evidence for the contrary (or for other reason start to doubt the
validity of the assumption) and therefore want to include them in the target. Changes in
assumptions are particularly relevant for changing and evolving systems since certain
assumptions may have to be discarded after the introduction or replacement of
functionality, services, end-users, etc.

2.2.1.5 Parties and/or Assets

A party of a risk analysis is an organization, company, person, group or other party on
whose behalf the risk analysis is conducted. Each risk that it identified and assessed is
associated with a party, so any change of parties will directly affect the risk analysis
results. More specifically, each risk is associated with an asset, and an asset is
something to which a party assigns value and hence for which the party requires
protection.

There are two additional ways in which changes in parties may be relevant in a risk
analysis. First, there may be organizational changes with respect to the customer of an
analysis as a result of changes in parties. An example might be that the company for
which a risk analysis was conducted is bought by another company, and the new
owners have different priorities. Second, we may want to use an earlier conducted risk
analysis as a template or pattern for later risk analyses. This may be the case if we are
doing a risk analysis of a system or organization similar to (or even the same as)
earlier analysed targets, or if we are doing a risk analysis in a very similar domain. In
this case we may think of it as a risk analysis parameterized with party that we apply as
a template or a pattern.

Since an asset is directly related to a party, any changes of parties will result in
changes of assets. Irrespective of changes in parties, however, it may also be that the
value of an asset is reassessed, an asset is completely removed from the target (for
example because it is transferred to another party, or because the new asset value
equals zero), or new assets are introduced.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 13 / 61

2.2.1.6 Context

The context of the analysis is the premises for and background of the analysis; this
includes the purposes of the analysis and to whom the analysis is addressed. The
context of the analysis is the premises for and the background of the analysis,
including the purposes of the analysis and to whom the analysis is addressed. Since
changes in the context moreover may require changes in the target description, also
the context must be taken into account when dealing with change in risk analyses.

2.2.2 Changes in our Knowledge

The final type of change that can affect our risk analysis results and that we therefore
must consider is the possibility of changes in our knowledge about the target and its
environment. Risk analysis results are usually dependent on expert opinions and
estimated likelihood and consequence values. If we get new or better knowledge about
the target or its environment, for example through monitoring, we might want to change
our estimates to correspond to this updated knowledge. Changes in our knowledge
may also reveal for us new threats and threat scenarios.

When conducting a risk analysis we choose the focus and scope, we make the
assumptions, and we make decisions about the parties and the context of the analysis.
These things are therefore not subject to observations and empirical investigation in
the same sense as the target its environment. Changes in our knowledge about the
target and its environment may nevertheless substantially affect the decisions and
assumptions upon which a risk analysis is based. The complete target description must
therefore be considered for changes and updates in case of changes in our knowledge.

2.2.3 Process of Change

When dealing with larger, planned changes there is another important aspect of the
change we need to handle – the process of change itself. In the transition from its old
to its new state, the target may be particularly vulnerable to threats, and risks may
originate from the changes of the target themselves. In these cases we should also
consider doing a risk analysis of the change process itself in addition to a risk analysis
of the new state of the target. This is particularly relevant for the before-after
perspective on change.

2.3 Summary of State-of-the-Art
In the deliverable D5.1 [18], a number of risk modelling languages were evaluated with
respect to the challenges of supporting risk analyses in the three perspectives
described in Section 2.1. The purpose of the evolution was to identify the starting point,
as well as useful approaches and ideas, for the development of the language.

Several (but far from all) of the languages investigated have some support for
associating elements of risk models to parts of the target description. Such a mapping
between risk models and target descriptions is relevant in the analysis of changing
systems since it enables risk documentation to be traced to the relevant system

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 14 / 61

documentation, and thereby facilitates the updating of the risk picture following system
changes.

– UML based approaches such as mis-use cases [19][20][21] may utilize built in
mechanisms in the UML for relating elements from different UML diagram, or a
suitable profile for doing so may be defined.

– In the Security DSML [14], architectural components and (security) information
are modelled and both security needs and risks are associated with these
components. Risk reduction components are related to risks and security
objectives. This means that risks are related to parts of the target, but it is at the
cost of not having relations between risks and other elements of risk analysis.

– In ProSecO [11], risks are related to elements of a functional model of the
target. In addition the model elements are related to security objective and
security requirements and risks are related to threats and security controls (for
treatment and mitigation).

– Tropos [2][3][8] is mainly a language for modelling and decomposition of goals.
Events (unwanted incidents) may be related to the goals, and the events may
be decomposed similar to the top event of a fault three. In addition, treatments,
represented as tasks, can be associated with the events of the event threes.

– CORAS [4][5][6] has support for modularizing risk models, which means that
each module of the model may be associated with a part of the target
description.

– In ADONIS [1], risks can be associated with the activities of a business model.

The only approach with some support for modelling states or phases of a change is
ProSecO. All elements of a ProSecO security model (security objectives, security
requirements, functional elements and risks) have a state which gives the status of the
element. When the models change, elements of the model may be transferred to states
that indicate that additional risk analysis is needed. ProSecO also gives some support
to modelling of the change process by means of state machines that define the state
changes of the elements of the security model.

Several languages exist for modelling of processes in general (e.g. UML, SPEM,
BPML) and we can assume that they to some degree may be applied for modelling of
change processes. However, the only approach we are aware of that allows you to
assign risk related information to the processes is ADONIS.

None of the languages for risk modelling investigated have any support for defining an
evolving risk picture or for incorporating time into the risk models, since structurally
they are all every static. Some of them, however, provide support for updating
qualitative values annotated to the diagrams, in the sense that by changing the input
values, the derived output values can be automatically updated. These languages
include fault trees, Markov models, Bayesian networks and the CORAS language.

To briefly summarise the state of the art, there do exist risk modelling languages that
provide some support for doing risk analysis of changes in the maintenance
perspective and the before-after perspective. This is not a surprise, as doing two risk
analyses and making two risk pictures, one “before picture” and one “after picture” is
always an options. For the continuous perspective, however, very little support was
found.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 15 / 61

3 Generic Language Extensions

In this section we characterize the language support needed in the context of risk
analysis of changing targets. As established in our state-of-the-art survey, several risk
modelling languages are in existence (see Section 2.3 and also [18]). We do therefore
not set out do define a completely new risk modelling language, but rather to define the
language extensions required for existing languages to be applied in the context of risk
analysis with change. Also for this reason, the language extensions are characterized
in a general manner and with the presumption that the proposed extensions will be
applicable in a number of different risk modelling languages. In Section 4, we
demonstrate this by implementing the general language extensions in different
concrete languages.

In line with this general approach, we will in the following assume risk analysis, system
analysis and requirement analysis, including their language support, to be black-boxes
in the sense that they are well-understood domains and that established concepts and
terminology can be inherited from these domains. The black-boxes that we operate
with in this report and their relations are shown in the UML class diagram of Figure 4.
We presume the existence of risk models that are obtained from risk analyses and the
existence of system models that are obtained from system analyses. Further, we
presume the existence of requirement models obtained by requirement analyses and
consider such models as part of system models. It should be noted that we in this
deliverable assume that a system model can capture all elements of a target
description as defined in Figure 3 in Section 2. This means we assume the system
models can capture assets, assumptions, environment, etc.

In the SecureChange project, Work Package 5 deals with risk analysis and risk
models, and this deliverable specifically deals with risk models. System analysis and
modelling are topics of Work Package 4 and requirement analysis and modelling are
topics of Work Package 3. These topics are therefore outside the scope of this
deliverable, but are present as black-boxes in order to emphasize the relations of Work
Package 5 to Work Packages 3 and 4.

Figure 4 Black-boxes and their relations

An implication of this general approach is that the implementation of the proposed
language extensions in a concrete language will involve substituting concrete
approaches for these black-boxes. For example, if fault tree analysis (FTA) [10] is the

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 16 / 61

approach to which we wish to apply our language extensions, we will substitute “Fault
tree analysis” and “Fault tree” for the general terms “Risk analysis” and “Risk model”.

In Section 2, three perspectives of change in risk analysis were presented. These three
perspectives are shown in a UML class diagram in Figure 5. In the following we have a
closer look at each of the perspectives, and decide for each of them the language
support needed for doing risk analysis within the perspective.

Figure 5 Perspectives on change

When discussing the language support for each of the perspectives we start by
sketching a work process by which a risk analysis within the perspective will proceed.1
The class diagram of Figure 5 serves as the staring point for a conceptual model of risk
analysis with change. After presenting the work process of a perspective we continue
to elaborate a conceptual model of the perspective. Then, based on the work process
and the conceptual model, we define the generic language extensions that support risk
analysis within the perspective. The language extensions are defined by means of
requirements, but also by an abstract syntax characterizing the language constructs
needed in a minimal language that fulfils the requirements. The idea is that a specific
approach to modelling risks with change and evolution should instantiate and possibly
extend the abstract syntax given for each of the perspectives.

The abstract syntax is introduced in Section 3.1 by characterizing the assumptions we
make with respect to risk models and system models in general. The maintenance
perspective is discussed in Section 3.2, the before-after perspective in Section 3.3 and
the continuous evolution perspective in Section 3.4.

3.1 Abstract Syntax
We define an abstract syntax for risk models and system models. The idea is that this
abstract syntax characterizes the assumptions we make about the models and that a
specific approach to risk or system modelling should be an instantiation of this abstract
syntax.

1 Methodology for risk analysis within the context of change and evolution is the topic for the
next deliverable of Work Package 5 in the SecureChange project “D5.3 Assessment method”.
The work processes will be refined and elaborated in this deliverable.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 17 / 61

We define a risk model as a set of risk model elements and a set of risk model
relations:

risk mod := ({risk mod elem}, {risk mod rel})

A risk model element consists of a risk model element type and a set of attributes:

risk mod elem := (risk model elem type, {attribute})

Typically, the risk model element types are entities like risk , threat , and vulnerability .
The attributes are usually entities like descriptions, identifiers, and likelihood and risk
values.

A risk model relation is a mechanism for relating risk model elements. We assume that
such relations may have annotations:

risk mod rel := risk mod elem risk mod elem

These relations may be casual or logical connections between the elements of the risk
model, and annotations may for example be conditions.

In the same manner as for the risk model we define a system model to be a set of
system model elements and system model relations.

sys mod := ({sys mod elem}, {sys mod rel})

Note that we will not go into details of system models in this deliverable. As
emphasized in the introduction and above, system modelling is dealt with in other work
packages. Furthermore, our abstract syntax has no specific treatment of requirement
models since the requirements should be embedded in the system model as shown in
Figure 4.

A system model element consists of a system model element type and a set of
attributes.

sys mod elem := (sys mod elem type, {attribute})

A system model relation is a means for relating the elements of a system model.

sys mod rel := sys mod elem sys mod elem

If we, as an example, think of the system model as a class diagram, class would be
one system model element type and the class name would be one of its attributes.
Associations between classes would be one kind of system model relation and the
cardinalities of the associations would be annotations.

In our terminology, as described in Section 2, we include in a target description not
only the system that is our target of analysis, but also such concepts as assets,
assumptions, environment, etc. Since we assert that a system model serves as a
target description, we allow system model to also include elements to represent these
concepts.

As explained in the introduction, when we define modelling support for risk analysis of
changing and evolving systems we are also in need of mapping models that define
mappings of risk model elements to system model elements. We define a mapping
model as a set of mappings:

map mod := {map}

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 18 / 61

In this report a mapping is a relation from a risk model element to a system model
element. As with risk model relations and system model relations, a mapping may have
a set of annotations:

map := risk mod elem ↦{annotations} sys mod rel

Typically, but not exclusively, a mapping model will map the risks of the risk model to
the assets of the system model. A typical annotation would be the consequence of an
incident on an asset.

Below, as an example, we show a definition of fault trees using the abstract syntax. An
instantiation of the abstract syntax for the CORAS language is given in Section 4.1.1.

3.1.1 Example: Fault Trees

As noted above, fault trees may be characterized as a kind of risk model. In this
section we define fault trees (in a simplified and incomplete version) by means of the
abstract syntax defined above. An example fault tree is shown in Figure 6.

Figure 6 Example fault tree

A fault tree has three types of elements, a top node, nodes and leaf nodes:

risk mod elem type := top node | node | leaf node

All nodes have a description and a probability as attributes. Leaf nodes do in addition
have an id or reference:

attribute := description | probability | id

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 19 / 61

top node := (top node, description, probability)

 node := (node, description, probability)

leaf node := (leaf node, id, description, probability)

risk mod elem := top node | node | leaf node

We categorize the top nodes, nodes and leaf nodes into child nodes and parent nodes,
which functions as the source and target of a parent relation.

parent node := top node | node

child node := node | leaf node

The relations may be annotated with AND or OR, depending on which logical gate in
the fault tree they represent.

annotation := AND | OR

risk mod rel := child node parent node | child node parent node

If we impose some constraints on the model – for example that each child node may
only have one parent and that all child nodes of a parent node must be related to the
parent with the same relation (AND or OR), etc. – we have a simple definition of fault
trees.

3.2 Maintenance Perspective
The maintenance perspective deals with the situation where we have a previous risk
analysis that has become outdated after a certain time of system evolution, and we
want to update the system documentation, the risk documentation and the risk analysis
results rather than doing it all from scratch. In the following sub-sections we present the
work process, the conceptual model, the language requirements, and the generic
language extensions of the maintenance perspective.

3.2.1 Work Process

In the maintenance perspective we assume a pervious risk analysis has been carried
out and a risk model (RM) was the output of this analysis. Further we assume the
existence of a system model (SM) that functioned as the target description and was the
input to the analysis. The process of maintaining the risk analysis results is shown in
Figure 7.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 20 / 61

Figure 7 Process of risk analysis in the maintenance perspective

At the start of the process, we have a risk model that over time has become invalid.
Each element of the risk model is checked for possible change by checking whether or
not elements of the system model related to the risk model element has changed or
not. In the case the related system model elements have not changed, we consider the
risk model element valid and it is kept unchanged. In the opposite case, where one or
more related system model elements have changed, the risk model element is
considered invalid and is in need for maintenance. We then proceed to update the
element(s) in the system model and then, based on the update of the system model, to
update the risk model element. After all risk model elements have been checked and
all invalid risk model elements are updated, the process ends with an updated risk
model where the validity has been restored.

3.2.2 Conceptual Model

Figure 8 presents the conceptual model of the maintenance perspective. Starting from
the top we see that the perspective introduces a number of updates of the target, which
means we had an old target before the updates and a current target after the updates.
With both the old target and the current target there are associated risks, which we can
refer to as old risks and current risks.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 21 / 61

Figure 8 Maintenance perspective

In the presentation of the work process in the previous section we assumed the
existence of a system model describing the before target and a risk model describing
the before risks. Further, from the process it can be derived that after the maintenance
analysis is completed there will be an updated system model and an updated risk
model. Thus, we will also have a system model describing the after target and a risk
model describing the after risks.

From the work process we can also derive the assumption of a relation between risk
model elements and system model elements. In order to represent this relation, we
include in the conceptual model a mapping model. The purpose of this mapping model
is exactly to provide a mapping between risk model elements and system model
elements. In the context of the maintenance perspective, this mapping model provides
support to the task of identifying the system elements related to a given risk model
element. (For an early attempt at establishing this relation, see [12]).

3.2.3 Language Requirements

As should be clear from the pervious sections, maintaining risk analyses is more of a
methodological problem than of a modelling language problem, and what is needed are
guidelines for how to systematically update and maintain the risk models and the risk
analysis results. This updating and maintenance is more of adjustments (e.g.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 22 / 61

increase/decrease in robustness, number of attacks, number of users, required
protection level, asset values, etc.) than of substantial changes of target, and likewise
of the risk models. In conclusion, the language support needed for the maintenance
perspective is really (a language for) the mapping model, as languages for risk models
and system models already exist. This is summarized in the language requirement
below.

L1. Language support for maintenance of risk analys is documentation

L1.1. Support for relating or mapping the elements of a risk model to the elements of a
system model describing the target of analysis.

3.2.4 Generic Extensions

The generic language extensions for the maintenance perspective should be defined
so that the requirement described above is fulfilled. In the abstract syntax we define a
maintenance model as a pair of snapshots, where a snapshot is a system model, a risk
model and a mapping model:

snapshot := (sys mod, risk mod, map mod)

maintenance mod := (snapshot, snapshot)

The snapshots represent the old (outdated) models and the current (updated) models
respectively. This means that the updates in the meta-model above are implicit in the
syntax.

A risk model must have at least “risk” as an element type:2

risk mod elem type := risk | …

risk := (risk, description, risk value)

risk mod elem := risk | …

A system model should include the element type “asset”. In addition we assume the
model has elements that describe the static and behavioural parts of the system and
elements that describe relevant parts of the environment of the system.

sys mod elem type := asset | …

asset := (asset, description, [asset value])

sys mod elem := asset | static elem | behavioural elem | environment elem | …

This means we have the following attributes:

attribute := description | risk value | asset value | …

We assume that the static, behavioural and environment elements of the system model
may be related to each other, and that assets are related to static elements or
behavioural elements:

sys mod rel := (static elem | behavioural elem | environment elem)

2 The … in the definitions below means we allow additional elements.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 23 / 61

 → (static elem | behavioural elem | environment elem)

 | asset → (static elem | behavioural elem)

Finally, the mapping model must map risk model elements to system model elements
in general and risks to assets in particular:

map := risk ֏ asset | risk mod elem ֏ sys mod elem

3.3 Before-After Perspective
In the before-after perspective we are concerned with risk analyses when we anticipate
major changes to the target of analysis. This means that in difference from the
maintenance perspective we consider the changes before they occur rather than in
retrospect. Further, it means that we are in the position where we also my consider
risks that arise from the changes in the target itself. In Section 3.3.1 we present the
work process of doing risk analysis in the before-after perspective, in Section 3.3.2 we
define the conceptual model for the perspective, in Section 3.3.3 we formulate the
requirements for language support, and in Section 3.3.4 we formalize the language
extensions.

3.3.1 Work Process

The work process for doing risk analysis in the before-after perspective is shown in
Figure 9. Similar to the process for the maintenance perspective, we presume the
existence of a system model describing the current target of analysis before the
changes occur and a risk model describing the risks related to the current target. We
can refer to this as the situation “as-is”. After the changes have occurred, we will have
a future target with future, possibly new, risks. This we refer to the situation “to-be”.
The purpose of a risk analysis in the before-after perspective is to obtain a risk model
that describes the risk picture both “as-is” and “to-be”, and a risk model describing the
risks associated with the transition from the target “as-is” to the target “to-be”.

We think of the changes as an operation that takes the “as-is” target as input and
produced the “to-be” target. The first step of the process is to document this change
operation (that of course may be the composition of a number of sub-operations).
Because this change operation applies to the target, it will naturally also apply to the
target description (in form of a system model). We can therefore assume that the
documentation of the change operation will provide us with a system model describing
the target “to-be” (or at least the means for obtaining such a system model).

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 24 / 61

Figure 9 Process of risk analysis in the before-after perspective

After the change operation is documented, the process proceeds in three parallel
tracks. The first of these parallels are similar to the process of risk analysis in the
maintenance perspective: Each risk model element is checked for potential changes by
checking whether or not the change operation will make changes to system model
elements related to the risk model element. In case not, the risk model element is kept
unchanged. In the other case, the risk model element is changed to reflect its status
both before and after the change. (Note that this is different from the maintenance
process where the element is simply updated to reflect the new situation.)

The second parallel of the process deals with system model elements that are new due
to the change operation, i.e. elements that are present in the “to-be” system model but
not in the “as-is” system model. These elements represent parts of the target of
analysis that have not been analyzed with respect to risks before. A risk analysis of
these elements must therefore be made and the risk related to them must be
documented as risks “to-be”. In order to obtain the new risk model, that documents
both the risks “as-is” and the risks “to-be”, the results of the first two parallels of the
process are combined.

The third parallel of the process deals with the change operation. As explained in
Section 2, the transition from the target “as-is” to the target “to-be” may in itself have
risks associated with it. A risk analysis of the change operation is therefore made and
the risks associated with it documented. Finally, the risk model describing the risks to
the change operation is combined with the risk model describing the risks before and
after the change, in order to obtain a complete risk picture of the change.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 25 / 61

3.3.2 Conceptual Model

The conceptual model for the before-after perspective is shown in Figure 10. As can be
observed, it is similar to the conceptual model of the maintenance perspective, but has
some essential differences. Similar to the update of the maintenance perspective, the
model introduces a change operation that changes the target from one state or
configuration to another and that may be perceived as functions from the current target
to the future target. Risks are then associated with the current target or the future
target or both.

The difference lies in that risks may also be associated with the change operation, as
assumed by the work process presented in the previous section. As with risks
associated with the target before and after the change, these risks are described by a
risk model. In addition, the mapping model introduced in the conceptual model of the
maintenance perspective includes also the change operation. The purpose of this is
twofold. First, there is a need for relating risks model elements to elements (sub-
operations, sub-tasks, etc.) of the change operation in the same way as risk model
elements are related to system model elements. Second, this provides a means for
relating elements of the system and risk model affected by the changes to the
elements of the change operation that account for the changes in specific system or
risk model elements.

Before-after

perspective

Risk model

Risk

Target

Change

operation

*

future target1

*

System

model

current target 1

current risk
*

0..1 0..1

future risk

risk to change
*

0..1

description of risk target description

Mapping

model

1

1..*

Figure 10 Before-after perspective

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 26 / 61

3.3.3 Language Requirements

As is evident from the above discussion, the before-after perspective has the same
requirement as the maintenance perspective that risk model elements can be mapped
to system model elements. Another essential requirement is that risks both before and
after a change has taken place must be represented in the risk models. In addition,
language support is needed for defining change operations, relating risk model
elements to the change operations and relating changes in system model elements to
changes in risk model elements. These requirements are summarized below.

L2. Language support for before-after risk analysis

L2.1. Support for relating or mapping the elements of a risk model to the elements of a
system model describing the target of analysis.

L2.2 Support for defining change operations.

L2.3. Support for relating risk model elements to sub-parts of a change operation.

L2.4. Support for representing risks before and after a change in risk model.

L2.5. Support for relating changes in risk and system elements to (sub-parts of) a
change operation.

3.3.4 Generic Extensions

In the following we define language extensions designed to fulfil the language
requirements formulated above. In the abstract syntax, a before-after model is a
system model, a change operation, a risk model and a mapping model.

before-after mod := (sys mod, change op, risk mod, map mod)

This means that – in difference from the maintenance model where the updates are
implicit and the two versions of the models are explicit – in the before-after model, the
change operation is explicit and the two versions of the models are more implicit.

The risks of the risk model should therefore have two risk values as attributes – a risk
value representing the current level of risk and a risk value representing the future
value of risks:

risk mod elem type := risk | …

risk := (risk, description, risk value, risk value)

risk mod elem := risk | …

In the system model we let the assets have optional asset values as attributes. As with
the risks of the risk model, the assets should have asset values for the current situation
and asset values for the future situation.

sys mod elem type := asset | …

asset := (asset, description, [asset value, asset value])

sys mod elem := asset | static elem | behavioural elem | environment elem | …

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 27 / 61

This means we have at least the following attributes:

attribute := description | risk value | asset value | …

The system model relations are equal to the system model relations of the
maintenance perspective and hold no surprises:

sys mod rel := (static elem | behavioural elem | environment elem)

 → (static elem | behavioural elem | environment elem)

 | asset → (static elem | behavioural elem)

As stated above, we represent the change operation explicitly in the before-after
model. We define a change operation as either a basic change operation or a
composite change operation:

change op := basic change op | composite change op

composite change op := {change op}

A basic change operation contains a description of the change and two system model
elements – the element on which the change operation operates before and after the
change:

basic change op := (description, sys mod elem, sys mod elem)

Finally, the mappings of the before-after model, in addition to mapping risks to assets
and risk model elements to system model elements, also map risk model elements to
change operations. This allows the model to express that there may be risks
associated with the process of change itself.

map := risk ֏ asset | risk mod elem ֏ sys mod elem | risk mod elem ֏ change op

3.4 Continuous Evolution Perspective
The continuous evolution perspective is concerned with describing risks that are
associated with a target of analysis that evolves over time and that themselves evolve
over time. This means that in a risk analysis in the continuous evolution perspective we
make risk models that describe and forecast how the risks evolve over time. This
section follows the same structure as the proceeding sections: In Section 3.4.1 we
present a work process for risk analyses in the continuous perspective, in Section 3.4.2
we define a conceptual model for the perspective, in Section 3.4.3 we specify the
perspective’s requirements for language support, and in Section 3.4.4 we define the
language extensions by means of an abstract syntax.

3.4.1 Work Process

The work process for risk analyses in the continuous evolution perspective is
presented in Figure 11. As with the work processes of the other two perspectives, the
process assumes pre-existing (ordinary) system and risk models describing the target
of analysis and the risks associated with it. For each risk model element of the risk
model, the element is analysed for possible evolvement over time based on possible

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 28 / 61

evolvement over time in the related system model elements. If the analysis reveals no
possibility of the system model elements, and hence the risk model element, evolving
over time, the risk model element is kept as in the risk model we started with.

On the other hand, if the system model elements related to the risk model element
have a potential for evolving over time, we use this information to generalize the risk
model element to an element evolving over time. The result is a risk model element
that has time as a parameter and in this way may be seen as a function over time.

When this process is repeated for all risk model elements, the result is the original risk
model generalized with respect to evolvement over time. In other words we get a risk
model with time as a parameter. We can think of this risk model as a function over time
in the sense that by inserting different values for time in the model we can get forecasts
of the risks associated with the target at different future points in time.

Figure 11 Process of risk analysis in the continuous evolution perspective

3.4.2 Conceptual Model

The conceptual model of the continuous evolution perspective is shown in Figure 12.
While the other perspectives introduce updates and change operations, this
perspective introduces an evolution. An essential feature of the evolution is that it
contains time as parameter. Instead of updating or changing the target as in the
pervious perspective, the evolution is part of the target in the continuous evolution
perspective, thus providing an evolving target. To this evolving target there are
associated risks, and as can be derived from the work process presented above we
can define these as evolving risks. For this reason the concept of evolution is also
contained in the risks associated with the target.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 29 / 61

As a result of this, the system model describing the target of analysis and the risk
model describing the risks associated with the target should also characterize this
evolution. In other words, they should have time as a parameter and be functions of
time as described in the previous sections. Further, the evolution of the risk model
elements should be related to the evolution of the related system model elements. In
the conceptual model for the continuous evolution perspective we therefore include the
evolution in the mapping model.

Figure 12 Continuous evolutions perspective

3.4.3 Language Requirements

The crucial point in language support for the continuous evolution perspective is the
possibility of representing risk model elements, and by extension risk models, as
functions of time. However, as with the other two perspectives, the process of making a
risk analysis with the continuous perspective also requires that we are able to relate or
map the risk model elements to system model elements. The difference is that in the
continuous evolution perspective we are interested in relating evolving risk model
elements to evolving system model elements. In addition to this we are also interested
in relating the evolution of a risk model element to the evolution of a system model
element. The requirements are summarized below.

L3. Language support for risk analysis of evolving systems

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 30 / 61

L3.1. Support for representing risk model elements and risk models as functions of
time.

L3.2. Support for relating or mapping evolving risk model elements to evolving system
model elements.

L3.3. Support for the relating the evolution of risk models element to the evolution of
system model elements.

3.4.4 Generic Extensions

In the following we define the language extensions of the continuous evolution
perspective by means of abstract syntax for a continuous evolution model fulfilling the
requirements stated above. In the abstract syntax a continuous evolution model is a
system model, a risk model, a set of evolutions and a mapping model.

continuous evolution mod := (sys mod, risk mod, {evolution}, map mod)

This means that, similar to the before-after perspective, the evolutions are explicitly
represented in the model, while the various snapshots that may be produced from the
model are implicit.

An evolution consists of a (possible formal) description and time:

evolution := (description, time)

The role of evolutions is to characterize how the various parts of the model evolve over
time. For this reason, the risk element of the risk model has evolution as one of its
attributes:

risk mod elem type := risk | …

risk := (risk, description, risk value, evolution)

risk mod elem := risk | …

The same is the case for the asset elements of the system model, even though for
assets this is optional.

sys mod elem type := asset | …

asset := (asset, description, [asset value, evolution])

sys mod elem := asset | static elem | behavioural elem | environment elem | …

This means that we have to count evolutions among the attributes:

attribute := description | risk value | asset value | evolution | …

We also define evolution as a kind of annotation:

annotation := evolution | …

The idea behind this is that when we relate the system model elements to each other
we should be able to bind the evolutions of the related elements together, and we
envision that this can be done by annotating the relations with evolutions in some way.

sys mod rel := (static elem | behavioural elem | environment elem)

 (static elem | behavioural elem | environment elem)

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 31 / 61

 | asset (static elem | behavioural elem)

The same idea is applied to the mappings of the mapping model. When risk model
elements are mapped to system model elements and (optionally) when risks are
mapped to assets, we should be able to bind the evolution of the risk model element to
the evolution of the system model element. As with the system model relations we
believe this can be obtained by some way of annotating the mappings with evolutions:

map := risk ֏[evolution] asset | risk mod elem ֏evolution sys mod elem

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 32 / 61

4 Instantiations of Generic Extensions for
Concrete Languages

In this section we demonstrate how the language extensions defined in Section 3 can
be implemented in concrete risk modelling languages. In Section 4.1 we provide
instantiations in the CORAS language, in Section 4.2 we provide instantiations for
Security DSML and in Section 4.3 we provide instantiations for ProSecO. The
instantiations of the CORAS language are based on the abstract syntax introduced in
Section 3, while the instantiations of Security DSML and ProSecO are based on the
conceptual models for each of the perspectives.

4.1 Instantiations for the CORAS Language
In the following we present instantiations of the generic language extensions defined in
Section 3 for the COARS language. We first provide a brief introduction to the
language as it is presented in the literature, referred to as basic CORAS, and then
provide instantiations of basic CORAS with respect to the three perspectives.

The instantiations are based on the abstract syntax introduced in Section 3. We first
provide a definition of basic CORAS using the abstract syntax, and then for each of the
perspectives modify this syntax to conform to the abstract syntax of the generic
language extensions of the perspective. For each of the perspectives we also provide
small examples of what the concrete (graphical) syntax of the CORAS language might
look like after modification of the abstract syntax of basic CORAS.

As in Section 3, we keep the assumptions about the system model at a minimum.
However, the CORAS method recommends UML for making target descriptions, so it
might be fruitful for the reader to think of the system model as a variant of UML
enhanced with concepts and constructs for security mechanisms, change and
evolution.

4.1.1 The CORAS Risk Modelling Language

The CORAS [4][5][6] risk modelling language has been designed to support
communication, documentation and analysis of security threat and risk scenarios. It
was originally defined as a UML profile, and has later been customised and refined in
several aspects, based on experiences from industrial case studies, and by empirical
investigations. It consists of the graphical syntax of the CORAS diagrams, and a
textual syntax and semantics translating the graphical elements into English.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 33 / 61

Figure 13 CORAS threat diagram

CORAS threat diagrams are used during the risk identification and estimation phases
of the CORAS risk analysis process. They describe how different threats exploit
vulnerabilities to initiate threat scenarios and unwanted incidents, and which assets the
unwanted incidents affect. A threat diagram organizes this information in a directed
acyclic graph, offering the same flexibility as cause-consequence diagrams and
Bayesian networks, but using a graphical syntax that is more intuitive and easy to read.
At the same time the semantics ensure that the translation of a diagram into English is
unique.

CORAS diagrams were originally designed for qualitative analysis. Likelihood and
consequence values are assigned directly by workshop participants during
brainstorming sessions. However, the CORAS method provides a calculus [5] for
computing likelihood and consequence values. The likelihood of an element may be
deduced given the likelihood assigned to its parent elements and the relations leading
to it. The calculus is also used to check the consistencies of assigned likelihood values.

An example of a diagram in the CORAS language is shown in Figure 13. Using the
abstract syntax defined in Section 3.1 we can define a CORAS model as follows:

risk mod elem type := threat | threat scenario | unwanted incident | vulnerability | risk

attribute := description | likelihood | unwanted incident | risk id | risk value | asset value

risk mod elem := threat | threat scenario | unwanted incident | vulnerability | risk

threat := (threat, description)

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 34 / 61

threat scenario := (threat scenario, description, likelihood)

unwanted incident := (unwanted incident, description, likelihood)

vulnerability := (vulnerability, description)

risk := (risk, risk id, unwanted incident, risk value)

annotation := likelihood | vulnerability | consequence

risk mod rel := threat threat scenario

 | threat scenario threat scenario

 | threat scenario unwanted incident

 | unwanted incident unwanted incident

sys mode elem type := party | asset

sys mod elem := party | asset

party := (party, description)

asset := (asset, description, [asset value])

sys mod rel := party → asset

map := unwanted incident ֏consequence asset | risk ֏asset

4.1.2 Instantiations for the Maintenance Perspectiv e

Support for risk analyses in the maintenance perspective is more about methodological
support than about language support. The approach to support the maintenance
perspective in CORAS is therefore to extend the CORAS method with guidelines for
how to maintain results and how to document results in a way that facilitates
maintenance. This means that no new modelling constructs as such are needed and
we keep the basic CORAS language unchanged. However, as noted in Section 3.2, we
need to support for specifying mappings between system models and risk models.

Most of the definitions in the abstract syntax of basic CORAS are unchanged, and we
do not repeat them here. However, we need a somewhat more elaborate system
model than assumed in Section 4.1.1, and therefore adopt the system model assumed
in Section 3.2.4 (generic language extensions for the maintenance perspective).

This means first that we allow more attributes, annotations and system model elements
that defined for basic CORAS. We do this by appending the … to the definitions:

attribute := description | likelihood | unwanted incident | risk id | risk value | asset value | …

annotation := likelihood | vulnerability | consequence | …

sys mode elem type := party | asset | …

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 35 / 61

Second, we assume that system models may (at least) contain static, behavioural and
environment elements, and update the system model relations accordingly:

sys mod elem := asset | party | static elem | behavioural elem | environment elem | …

sys mod rel := (static elem | behavioural elem | environment elem)

 → (static elem | behavioural elem | environment elem)

 | party → asset

 | asset → (static elem | behavioural elem)

With this enhanced system model definition, we define the mappings that make up the
mapping model. In addition to having mappings from risk and unwanted incidents to
assets, as in basic CORAS, the new mapping model also allows the elements of a
CORAS model, i.e. threats, threat scenarios, vulnerabilities, unwanted incidents and
risks, to be mapped to static behavioral and environment elements.

map := unwanted incident ֏consequence asset

| risk ֏asset

| threat ֏ (static elem | behavioural elem | environment elem)

| threat scenario ֏ (static elem | behavioural elem | environment elem)

| vulnerability ֏ (static elem | behavioural elem | environment elem)

| unwanted incident ֏ (static elem | behavioural elem | environment elem)

| risk ֏ (static elem | behavioural elem | environment elem)

Figure 14 illustrates this mapping of risk model elements to system model elements. Is
should be noted that we do not propose this as a notation for making these mappings,
for two reasons. First, we believe that an explicit notation for these kinds of mappings
will make messy diagrams and therefore obscure rather than clarify. Second, as stated
above, this is a methodological problem and not a modelling problem and we should
seek a way to handle this methodologically, i.e. look for ways to identify the mapping
rather than ways to represent the mappings.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 36 / 61

Customer[*] Firewall

Gateway

Online store

Web application

Cust intrf

Backend

Database[2..*]

Developer

Developer

causes flaw in

SW

[Likely]

Online store

down due to

SW flaw

[Unlikely]

Online store

System

failure

Immature

technology

Unstable

network

connection

Web

application

goes down

[Rare]

Loss of network

connection

[Unlikely]

Online store

down due to

system failure

[Rare]

Lack of

competence
Insufficient

testing and

verification

0.1

Moderate

Minor

0.9

0.2

Developer[*]

Figure 14 CORAS risk model with mappings to the system model

4.1.3 Instantiations for the Before-After Perspecti ve

In the before-after perspective we are dealing with substantial, revolutionary and
planned changes. We know the target as-is and if we provide a sufficient specification
of the change operation, we will also know (or be able to obtain) the target to-be. The
goal of a risk analysis in the before-after perspective is to update the risk analysis
before the changes are made, as well as analysing the risks related to the change
process. The language support is therefore twofold; we need language support for
documenting the changes in the risk picture resulting from the changes of the target,
and we need language support for documenting the risks related to the change
operations.

When instantiating the generic language extensions defined for the before-after
perspective using the CORAS language – and thus extending CORAS with the
necessary language support – we start by redefining the risk model elements. The risk
model elements that contain likelihoods or risk values we now allow to hold two values

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 37 / 61

– one value for the current risk picture and one value for the future risk picture. The
risk model elements that do not contain values in basic CORAS are allowed to hold a
pair of Boolean values (bits) to represent their presence (or non-presence) in the
current and in the future risk picture. These new attributes of the risk model elements
are made optional for the reason that we will also map them to the change operations
(change process) and then the current/future distinction does not necessarily make
sense.

In the abstract syntax this is defined as follows:

attribute := description | likelihood | unwanted incident

| risk id | risk value | asset value | 0 | 1 |…

annotation := likelihood | vulnerability | consequence | …

threat := (threat, description, [0 | 1, 0 | 1])

threat scenario := (threat scenario, description, likelihood, [likelihood])

unwanted incident := (unwanted incident, description, likelihood, [likelihood])

vulnerability := (vulnerability, description, [0 | 1, 0 | 1])

risk := (risk, risk id, unwanted incident, risk value, [risk value])

We do the same thing for risk model relations, so that each relation has the option of
being annotated with two likelihood values – one value for the current risk picture and
one value for the future risk picture:

risk mod rel := threat threat scenario

 | threat scenario threat scenario

 | threat scenario unwanted incident

 | unwanted incident unwanted incident

With respect to the system model we make the same assumptions – and hence the
same definitions – as for the maintenance perspective, with the exception of the
definitions of asset and party. These elements get the same treatment as the risk
model elements and are allowed the additional values to represent the current and the
future situation. We not repeat the definitions that are unchanged from the
maintenance perspective. The new definitions of asset and party are as follows:

asset := (asset, description, [asset value, asset value])

party := (party, description, [0 | 1, 0 | 1])

We do not make any assumptions with respect to the change operations other than
what was made in the generic language extensions for the before-after perspective in
Section 3.3.4, and do repeat the definitions given there. However, in the mappings of
the mapping model we allow all the risk model elements to be mapped to change
operations in addition to system model elements:

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 38 / 61

map := unwanted incident ֏consequence, [consequence] asset

| risk ֏asset

| threat ֏ (static elem | behavioural elem | environment elem | change op)

| threat scenario ֏ (static elem | behavioural elem | environment elem | change op)

| vulnerability ֏ (static elem | behavioural elem | environment elem | change op)

| unwanted incident ֏ (static elem|behavioural elem|environment elem|change op)

| risk ֏ (static elem | behavioural elem | environment elem | change op)

In addition to this, there is a second modification of the mappings. The mappings of
unwanted incidents to assets may now specify two consequence values: one with
respect to the current situation and one with respect to the future situation.

Figure 15 exemplifies the extensions to the CORAS language defined above with a
concrete CORAS diagram. What should be noted are the pair of values in the risk
model elements and on the relations, which are the main extensions of the language
with respect to basic CORAS.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 39 / 61

Figure 15 CORAS model in the before-after perspective

4.1.4 Instantiations for the Continuous Evolution
Perspective

In the continuous evolution perspective we are concerned with the situation where we
plan for the target to evolve over time or we in other ways are able to anticipate gradual
changes over time. In this perspective the target description is not updated or changed
as with the other perspectives; instead, evolution is a part of the target and represented
in the system model. Evolution will therefore also be part of risks and we need
evolution to be represented in the risk picture described in the risk model.

The challenge of defining the language extensions to the CORAS language in the
continuous evolution perspective is to find a sensible way of representing the
evolutions. Our solution to this challenge is to define the different values of risk model
elements – i.e. asset value, likelihood, consequence and risk value – as evaluations.
We also define an additional evolution called indicator (a concept adapted from [15]):

evolution := indicator | asset value | likelihood | consequence | risk value

An indicator is an evolution defined for system model elements other than asset and
party, and is defined as a function over time or other indicators:

indicator := (function, time variable | {indicator})

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 40 / 61

Asset value is defined as a function over indicators:

asset value := (function, {indicator})

Likelihood is a function over indicators and other likelihoods:

likelihood := (function, {likelihood | indicator})

Consequence is a function over asset value and possibly indicators:3

consequence := (function, asset value, {indicator})

Risk value is defined as a function of likelihood and consequence, as is the common
way of defining risk values:

risk value := (function, likelihood, consequence)

We can see that indirectly all the values are now defined as functions of time. As a
result of this approach of defining the values of the risk model elements as evaluations,
there is no need for redefining neither the risk model elements nor the risk model
relations with respect to basic CORAS in order to have evolution represented in the
risk model.

The same is the case for the asset element of the system models. However, as stated
above, the other system model elements should contain indicators. As with the other
perspective we define static, behavioural and environment elements as system
elements. In difference from the other perspective we include indicators in their
definitions:

static elem := (sys mod elem type, {indicator}, {attribute})

behavioural elem := (sys mod elem type, {indicator}, {attribute})

environment elem := (sys mod elem type, {indicator}, {attribute})

sys mod elem := asset | party | static elem | behavioural elem | environment elem | …

When we define the system model relations we let them, with the exception of the
relation from party to asset, be annotated with indicators. The reason for this is that we
assume the system models have some means for specifying indicators that influence
the relation between system model elements.

sys mod rel := (static elem | behavioural elem | environment elem)

 (static elem | behavioural elem | environment elem)

 | party → asset

 | asset (static elem | behavioural elem)

We do the same thing for the mappings from risk model elements to system model
elements (with the exception of the mapping from risk to asset). The rationale for this is
to provide a means for specifying which indicators of a system model element that
influence the risk model element mapped to it.

3 The intuition here is that a consequence value represents loss of asset value.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 41 / 61

map := unwanted incident ֏consequence asset

| risk ֏asset

| threat ֏ (static elem | behavioural elem | environment elem)

| threat scenario ֏{indicator}(static elem | behavioural elem | environment elem)

| vulnerability ֏{indicator} (static elem | behavioural elem | environment elem)

| unwanted incident ֏{indicator} (static elem | behavioural elem | environment elem)

| risk ֏{indicator} (static elem | behavioural elem | environment elem)

As a result of this, we need to define indicator as a kind of annotation:

annotation := likelihood | vulnerability | consequence | indicator | …

Figure 16 shows an example of a CORAS diagram extended with the evaluations
defined above. Note first that two of the system model elements define indicators with
the time variable t as argument. Note also how the values of the risk model elements
are expressed as functions over indicators and other values in the risk model.4

4 We of course assume here that the functions f1, f2, f3, f4, and f5 are given sensible definitions.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 42 / 61

Customer[*] Firewall

Gateway

Online store

Web application

Cust intrf

Backend

Database[2..*]

Developer

Developer
causes flaw in

SW
[L1]

Online store
down due to
SW flaw
[L2]

Lack of

competence
Insufficient
testing and

verification

P1

Developer[*]
Indicators:
- ()

Online store
[AV]

CP2

P1 = 1(()) L1 = 2(P1) P2 = 3(())

L2 = 4(L1,P2, ()) C = 0.3 AV AV = 5(())

Indicators:
()

()
()

Figure 16 CORAS model in the continuous evolution perspective

4.2 Instantiations for Security DSML
As a long-term industrial initiative, Thales develops a new method to support security
risk analysis, closely integrated with the overall engineering process of our critical
information systems. This method is building upon model-based engineering
techniques. The report [14] presents a prototype domain-specific modelling language
(DSML) that was developed in this context; this DSML aims at supporting the analysis
and assessment of security risks for a system, and the specification of requirements for
security measures to address those risks. Our objective is to provide adequate and
efficient tooling to security engineers for an effective integration of security engineering
in the process of critical system design, so as to enable a better targeting of security
specifications.

4.2.1 Enhancing System Security Engineering in Thal es

A comprehensive approach of security engineering starts with an analysis of the risks
pending on the system. For critical systems, this analysis must be conducted with the
biggest attention since the impacts can be very damaging for the populations in relation
to those critical systems. On the other hand, overestimating risks may lead to
excessive or unnecessary security measures, introducing undue rigidities and costs.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 43 / 61

The specification of security requirements builds upon this risk analysis, and aims at
defining requirements that are commensurate with the risks.

Currently in Thales, Security Analysis activities are carried out with the help of
structured and proven methods that use referential repositories (of types of threats and
vulnerabilities, of impacts and damages, attack scenarios, security functions etc.),
standardized or not, and tabular, cross-matrix and dashboard based tools. EBIOS [7]
and MEHARI [13] are the main methods employed at our company.

These methods imply a limited perception of the architecture of the system upon which
the risk analysis is realised. In particular, we carried out a study of these methods and
realized that they target on the one hand the business process supported by a system
and on the other hand, in very little detail, technical and physical elements of the
system (applications, databases, data files, servers, networks, mobile PCs etc.). Finer-
grain knowledge of the architecture is not taken into account in these methods. The
topology, data flows and functional dependencies throughout the system are especially
not analyzed, which can lead to sub-optimal risk analyses and security requirements
specifications.

Our work aims at developing a method that enables an enhancement of these classical
risk analysis methodologies. As summarized in Figure 17, these enhancements rely on
leveraging detailed knowledge of the targeted system in close integration with the
mainstream system engineering process, and developing fine grain analyses of the
actual risks at stake. This method builds upon the capacities provided by model-based
development methods and techniques that are currently spreading in the systems
engineering community, but are still poorly used in the security engineering domain.

Our general objectives of enhancement are the following:

• Objective1: To optimize the qualification of the risks and the specification of
security requirements and related security costs.

• Objective 2: To optimize the quality and the productivity of security engineering
by capitalizing on data from one study to the next, and by proceeding to
automatic calculation and consistency checking.

• Objective 3: To optimize the quality and the productivity of security engineering
by sharing common models of the system between system design and security
analysis and thus by working on synchronized and consistent models of the
system throughout the design process.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 44 / 61

Figure 17: Enhancing system security engineering methods

4.2.2 Security DSML: Overview

4.2.2.1 Domain of Interest

Our goal is to build a DSML allowing the support of finer grain, more formal security
analyses that exploit formalized system architecture descriptions. The security architect
formalizes security information and relates it to architecture components.

Figure 18 illustrates the scope and context of use for our “Security DSML”:

Figure 18: Scope of the Security DSML

• The System architecture model is built using distinct languages (like, for
example, UML and/or UML profiles) by a System architect. The Security DSML

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 45 / 61

is defined with limited dependency upon the specific system architecture
description formalism. The objective is to be able to use the DSML concurrently
with different languages for the specification of system architectures.

• Security needs are determined for each individual architecture components or
groups of such, by a Business expert. A Security need is initially expressed
intrinsically (e.g. “The document needs to be defence confidential”), without
taking into account the risks, but only the impacts of unwanted actions and
damages they may inflict.

• A Risk Analysis takes place, involving the collaboration of the Business and
Security experts, in order to identify and value risks regarding system
components and subcomponents.

The Security DSML shall support security needs and risks to be refined and projected
on a System architecture model.

The DSML shall then support the experts work in determining which risks are
unacceptable towards the specified security needs, either because they have a too
important impact, a too big opportunity of happening, or both, making these
components critical.

Security objectives are defined in order to reduce unacceptable risks and consequently
bring the current level of security to a newly defined targeted one. The Security DSML
shall support the capture of these security objectives and the assessment of their
coverage of unacceptable risks pending on architectural components.

4.2.2.2 Static Model

The Risk analysis model, security requirements model and context model are
expressed in a dedicated DSML. As shown by Figure 19, these kinds of models are
parts of static model:

• Requirement Model describes the specialization of Objectives into several
Requirements and the links between those and the other elements of DSML
(Risk, Context).

• Context Model describes System Architecture (Essential Elements and/or
Target), related constraints and the links between those and the other elements
of DSML (Risk, Requirement).

• Risk Model describes the risk characterization into threats, damages and
vulnerabilities and the links between those and the other elements
(Requirement, Context).

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 46 / 61

Figure 19: Security DSML Static Model description

To address change inside this DSML, we consider a change model which could be
mapped with all models included in the static model. Figure 20 depicts the traceability
relation between different models defined in DSML and the relation with the change
model presented in section.

Figure 20: Relationship between DSML Static Models and Change Model

4.2.2.3 Risk Model

A detailed presentation of the context meta model and syntax of Security DSML are
outside the scope of this deliverable. Below we provide representative extracts; more
details are provided in [14]. The core part of the Security DSML conceptual model is
represented in Figure 21 below.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 47 / 61

The system under analysis is considered to hold targets and essential elements.
Targets are physical elements subject to vulnerabilities and damages by threats.
Essential elements are usually more logical, functional elements: data and functions (or
services, or capabilities depending on context) that are essential to the business stakes
of the company, and therefore subject to security needs. Essential elements depend on
targets for their implementation.

Figure 21: DSML Risk Model – Conceptual Model

The central concept of our security analysis conceptual model is the one of risk. A risk
pertains to an essential element of the system. A risk comes from the combination of a
threat that could exploit an opportunity to take advantage of a vulnerability of a target,
with the essential element depending on the target. A risk is valuated based on its
impact on the target and its opportunity to be triggered on the target. It’s possible to
describe by textual sentence the needed operation to reduce Risk.

4.2.3 DSML Extension: Change Model

To represent traceability between changes and static model, we add a further Model
into DSML: Change Model which is composed by several Change Lines. As shown by
Figure 22, a Change Line is considered as set of Changes and Change Transitions to
preserve links and grant consistency between successive changes which compose a
Change Line.

Change is described by a Change Trigger (e.g. discover a fault or a new threat) which
activates a Change Request. It’s also possible to activate a Change Trigger by a
threshold defined in an Evolution Function which monitors the static model of the
system.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 48 / 61

Figure 22: DSML Change Model- Conceptual Model

As shown by Figure 23, a Change Request contains a PUID5 to identify it and a status
which represents the state of Change request (for further detail see [16]). After the
activation of Change Request by the Change Trigger, Change Request status is first
defined in CCB (Configuration Control Board). The configuration (or change) control
board (CCB) is a periodic meeting between several actors of a development team
(client, manager, quality, design, integration …) to define change requests which are
accepted, refused or postponed in the next version of system. The detailed behavior of
Change Request is described in [16].

To covers all kind of static models, Change Request is specialized into the following
kinds:

• Requirement Change Request modifies Requirement Model (Requirement,
Objectives). It’s possible to map this kind of Change Request with DOORS
Change Request, for further details see [17].

• Context Change Request modifies Context Model (e.g. system architecture).

• Risk Change Request modifies Risk Model (Risk, Threat, Damage,
Vulnerability).

These three kinds of Change Request are dependants; a Requirement Change
Request could impact on Risk Change Request and Context Change Request and vice
versa. This is why we consider a traceability relation between those Change Requests.
This relation is described by an “impacts_on” association (see Figure 23).

5 PUID = Product Unique Identifier

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 49 / 61

Figure 23: DSML Change Request - Conceptual Model

To define correctly a Context Change Request, Security Designer must first of all take
into account related constraints of the context model. This relation is shown by
association “respects” between Context Change Request and Constraint in Figure 24.
These constraints describe how the service provided by the system should be realized
in the context model. Independent of Platform, theses constraints are applied on
Essential Elements of the System which describes the logical view of the system.
These constraints are evaluated on specific targets which realize Essential Element in
more concrete view dependant of the system platform. These constraints must be
stored in change transition in order to preserve them on successive changes inside the
change model.

Figure 24: Relations between Context Change Request and Context Model – Conceptual Model

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 50 / 61

4.2.3.1 Instantiation to the Maintenance Perspectiv e

This sub section presents the DSML instantiation to the maintenance perspective.
Starting from the top of Figure 25, we see that this perspective defines a number of
updates that have some impacts in the Context Model (e.g. Essential Element, Target).
This set of update activates one Change Trigger in order to open a new Context
Change Request. This Context Change Request describes the updates on the Context
Model and must respect the related constraint of the Context Model.

Figure 25: DSML Maintenance Perspective - Conceptuel Model

According to Figure 8, Context Change Request should take into account new or
updated risks in the Risk Model. This is why Context Change Request could impacts
on Risk Change Request which describes the new/updated risks on the Risk Model
and impacts on other Change Requests, and so forth.

4.2.3.2 Instantiation to the Before-After Perspecti ve

The conceptual model of the instantiation to the before-after perspective is shown by
Figure 26. This perspective defines a number of changes linked by a transition to
preserve links and grant consistency between successive changes (e.g. change
realized before and after). These different changes are composed by a set of Change
Requests.

According to Figure 10, Risks may be associated with the Change Request to denote
related risk on change. As in the model of change, new/updated risks are described by
Risk Change Requests which modifies the Risk Model and impacts on other Change
Requests, and so forth.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 51 / 61

Figure 26: DSML Before-After Perspective - Conceptual Model

4.2.3.3 Instantiation to the Continuous Evolution P erspective

The conceptual model of the instantiation to the continuous evolution perspective is
shown by Figure 27. According to Figure 12, while the other perspectives define
updates and change operations, the continuous perspective defines evolutions
functions. An essential feature of these evolutions is that they contain time as
parameter. In this case of perspective, Change Trigger is activated by a threshold
defined in Evolution Function.

Evolution functions monitor the static model, as example thus providing an evolving
system. To this evolving system there are associated risks. Evolution functions are also
contained in the risks to the evolving system, resulting in evolving risks. As in the
model of change, new/updated risks are described by Risk Change Requests which
modifies the Risk Model and impacts on other Change Requests, and so forth.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 52 / 61

Figure 27: DSML Continuous Evolution Perspective - Conceptual Model

4.3 Instantiations for ProSecO
The ProSecO [11] approach has a specific view on system management as a process
driven by change propagation. A model may be maintained by various stakeholdes in
an enterprise. Changes to the system are reflected in the system model and these
changes may trigger the necessity for changes of other model elements, in order to
make the model consistent and to represent the changed situation correctly.

We start this section with a short introduction to the ProSecO modelling language and
its view on change in general. Then we describe the specific extensions for modelling
change and relate them to the meta-models given in Section 4.3.2.

4.3.1 ProSecO and its View on Change

ProSecO supports different views onto a target system, modelling different aspects as
e.g. the Software Engineering View or the IT-Management View. These aspects are
modelled as layers (packages) in the overall System Meta Model (see Figure 28).

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 53 / 61

Figure 28 ProSecO Meta Model for the IT-Management, Systems Operationx and Software Engineering

layer

For a complete description of the ProSecO Meta Model we refer to [16] and [9].

The security meta model is considered as an extension (called plug-in) (see Figure 29).
In the centre of this plug-in is the concept of the ModelElement which is the super class
of any conceptual element in the other views. (For the sake of readability, the
inheritance relationships to all those elements are not drawn in Figure 29).

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 54 / 61

Figure 29 The ProSecO Meta Model for the Security Plugin

ModelElements are related to certain Business Security Objectives and/or derived
Security Requirements, and may be subject to certain Risks.

4.3.1.1 Change Propagation

Each element in a ProSecO model can have a specific attribute that reflects its current
state. A very simple example is e.g. the state of a Risk as an element of the
enumeration ReviewStates = {to be reviewed, under review, controlled}.

States are used to manage the change process in an organization. Elements in certain
states may require manual interaction to act on this situation, as e.g. a Risk in the state
to be reviewed may require an action of the risk manager to put a risk under review.

Furthermore each class has also an associated state machine that can react on state
changes of its instances and may emit some actions, as e.g. propagating its change to
other elements. In our example, this would mean, that a state change of a
ModelElement may entail a state change in each associated Risk to the state to be
reviewed. Thus state changes are propagated though the model, triggering various
actions.

4.3.2 Explicit Handling of Change in the ProSecO Me ta
Model

Besides the operational view of change in the modelling process, ProSecO is also
extended to provide support to model change explicitly inside the model as a before-
after perspective (and also to some extent as a maintenance perspective).

Explicit Modelling is done on the basis of the Change Request concept, which
represents a request for a change. The change request has an explicit status out of the
ChangeRequestStatus = {under preparation (the change request is discussed, but not

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 55 / 61

yet executed), activated (the basic change is inserted into the model), in progress (i.e.
the consequences of the change are currently modelled), finished (the modelling of the
consequences of the change request is finished)}6.

When a change request is activated, the initial consequences are modelled through the
concept of a ChangeEvent. This change event defines the initial changes defined in the
change request. After that change event further state transitions of other model
elements may be fired, in order to signal inconsistencies or update tasks to activate
change actions by the responsible stakeholders. The status of the ChangeRequest is
set to in progress.

If all ModelElements are in a state that correctly reflects the effects of the
ChangeRequest, its status can be manually set to finished.

Figure 30 Explicit Handling of Change in ProSecO

4.3.2.1 Before-After Perspective

The concept of the change operation in the meta model of the before-after perspective
(Figure 10) corresponds to the ChangeEvent in ProSecO. The ChangeEvent
resembles all changes to a Model, such it is able to represent a current target and an
future target relationship in a model.

The “risk to change” relationship between the Change operation and a Risk corres-
ponds to the (indirect) “risk to change” relationship between the ChangeEvent to Risk
(via a Change Request).

6 Of course, depending on the organization’s internal change request process, the states and
the state transitions can be far more complex.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 56 / 61

4.3.2.2 Maintenance Perspective

The concept of an update in the maintenance perspective corresponds also to a
ChangeEvent, however without an explicit Change Request.

Also in the Maintenance Perspective we can derive a model before the ChangeEvent
(although the analysis of such a model is not in the focus of the maintenance
perspective).

4.3.2.3 Continuous Evolution Perspective

ProSecO caters for the continuous monitoring of current system parameters. A model
is able to automatically include current (and past) system parameters into its model.

The meta model can be extended by attributes that define the (planned) evolution of
certain parameters. However there is no formal semantics of such an attribute.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 57 / 61

5 Conclusions

How we handle changes in a risk analysis depends to a large degree on the context
and the types of changes we are dealing with. In order to clarify the language support
needed for modelling changing and evolving risk pictures we have identified three
perspectives on change with respect to risk analyses:

• The maintenance perspective, where an old risk picture is updated after the old
analysis target has been updated.

• The before-after perspective, where a risk picture of future changes of an
analysis target is made based on a risk picture of the current analysis target.

• The continuous evolution perspective, where a risk picture is generalized to
capture evolution of risks as the analysis target evolves.

The three perspectives require different processes and different language support.
After an investigation into the perspectives, which included specifying work processes
and conceptual models, we were able to formulate a number of requirements for the
language support needed in each perspective. Further, we defined, for each of the
perspectives, a number of generic language extensions formalized by means of an
abstract syntax.

Several languages for modelling risks exist, but none with explicit support for
documenting changing or evolving risk pictures. The generic language extensions
formalized in the abstract syntax make only a minimum of assumptions about risk (and
system) modelling languages and can therefore be implemented in a large number of
risk modelling languages. By implementing the generic language extensions defined in
this deliverable in a given risk modelling language – i.e. instantiating the extensions
with the risk modelling language – we can obtain a risk modelling language with
modelling support for the chosen perspective.

The generality and applicability of this approach are demonstrated by the instantiation
of the language extensions in three different risk modelling languages: the CORAS
language, Security DSML and ProSecO. In the case of the CORAS language the
instantiations were made by instantiating the abstract syntax of the generic language
extensions, while in the case of Security DSML and ProSecO the instantiations were
made by instantiating the conceptual models.

These instantiations, in addition to demonstrating the approach, also provide three risk
modelling languages with support for describing changing and evolving risk pictures.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 58 / 61

Appendix: Glossary

Terminology is not consistently applied within the field of risk management and risk
analysis. For this reason, the terminology used in the various approaches presented in
this report might also be somewhat inconsistent. We have, however, strived at keeping
the terminology consistent at least in the general parts of the report. In this glossary,
we provide the definitions we apply, for a number of central concepts in risk analysis.

Asset: Something to which a party assigns value and hence for which the party
requires protection.

Assumptions: The assumptions of the analysis are what we take as granted or accept
as true (although they may not be so); the assumptions may be about the target and
about the environment; the results of the analysis are valid only under these
assumptions.

Consequence: The impact of an unwanted incident on an asset in terms of harm or
reduced asset value.

Context: The context of the analysis is the premises for and background of the
analysis; this includes the purposes of the analysis and to whom the analysis is
addressed.

Direct asset: An asset that is not indirect.

Environment: The environment of the target is the surrounding things of relevance
that may affect or interact with the target; in the most general case, the rest of the
world.

Focus: The focus of the analysis is the main issue or central area of attention in the
risk analysis; the focus is within the scope of the analysis.

Indirect asset: An asset the harm to which is completely determined by the harm to
other assets with respect to the target of analysis.

Likelihood: The frequency or probability of something to occur.

Party: An organisation, company, person, group or other body on whose behalf the
risk analysis is conducted.

Risk: The likelihood of an unwanted incident and its consequence for a specific asset.

Risk level: The level or value of a risk as derived from its likelihood and consequence.

Scope: The scope of the analysis is the extent or range of the target of the analysis;
the scope defines the border of the analysis, i.e. what is held inside of and what is held
outside of the analysis, what is the target and what is the environment.

Target: The target of the analysis is the system, organisation, enterprise, etc., or parts
thereof, that is the subject of the risk analysis.

Target description: The target description is a description of the target including its
focus, scope, context, environment, assumptions, parties and assets; only the parts or

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 59 / 61

aspects of the environment that are relevant for the target and the analysis are
included in the target description.

Threat: A potential cause of an unwanted incident.

Threat scenario: A chain or series of events that is initiated by a threat and that may
lead to an unwanted incident.

Treatment category: A general approach to treating risks; the categories are avoid,
reduce consequence, reduce likelihood, transfer and retain.

Treatment scenario: The implementation, operationalization or execution of
appropriate measures to reduce risk level.

Unwanted incident: An event that harms or reduces the value of an asset.

Vulnerability: A weakness, flaw or deficiency that opens for, or may be exploited by, a
threat to cause harm to or reduce the value of an asset.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 60 / 61

References

[1] ADONIS. Risk management and compliance with ADONIS: Community Edition.

[2] Asnar, Y. and Giorgini, P., Modelling risk and identifying countermeasures in
organizations. In Proc. 1st International Workshop on Critical Information Infrastructures
Security (CRITIS ’06), number 4347 in LNCS, pages 55–66. Springer, 2006.

[3] Asnar, Y., Moretti, R., Sebastianis, M., and Zannone, N., Risk as dependability metrics for
the evaluation of business solutions: A Model-driven Approach. In Proc. Third
International Conference on Availability, Reliability and Security (ARES’08), pages 1240–
–1247, 2008.

[4] den Braber, F., Hogganvik, I., Lund, M. S., Stølen, K., and Vraalsen, F., Model-based
security analysis in seven steps – a guided tour to the CORAS method. BT Technology
Journal, 25(1):101–117, January 2007.

[5] Brændeland, G., Dahl, H. E. I., and Stølen, K., A modular approach to the modelling and
analysis of risk scenarios with mutual dependencies. Technical report A8360, SINTEF
Information and Communication Technology, 2008.

[6] Dahl, H. E. I. and Hogganvik, I., and Stølen, K., Structured semantics for the CORAS
security risk modelling language. Technical report STF07 A970, SINTEF Information and
Communication Technology, 2007.

[7] EBIOS – Expression of Needs and Identification of Security Objectives.
http://www.ssi.gouv.fr/en/confidence/ebiospresentation.html, retrieved 23.06.2009.

[8] Giorgini, P., Mylopoulos, J., and Sebastiani, R., Goal-oriented requirements analysis and
reasoning in the Tropos methodology. EAAI, 18(2):159–171, 2005.

[9] Hafner, M. and Breu, R., Security Engineering for Service oriented Architectures.
Springer, 2009.

[10] IEC61025, Fault Tree Analysis (FTA), 1990.

[11] Innerhofer-Oberperfler, F. and Breu, R., Using an enterprise architecture for IT risk
management. In Proc. Information Security South Africa Conference 2006: From Insight
to Foresight Conference (ISSA’06), 2006.

[12] Lund, M. S., den Braber, F., and Stølen, K., Maintaining results from security
assessments. In Proc. Seventh European Conference on Software Maintenance and
Reengineering (CSMR’03), pages 341–350, IEEE Computer Society, 2003.

[13] MEHARI: Information risk analysis and management methodology.
https://www.clusif.asso.fr/en/production/mehari/, retrieved 23.06.2009.

[14] MODELPLEX Deliverable D3.3.g: DSML for security analysis. 2009.

D5.2 Documentation of forecasts of future evolvement |

version 1.0 | page 61 / 61

[15] Refsdal, A. and Stølen, K., Employing key indicators to provide a dynamic risk picture
with a notion of confidence. In Proc. IFIP Trust Management III. Third IFIP WG 11.11
International Conference (IFIPTM’09), pages 215–233, Springer, 2009.

[16] SecureChange Deliverable D2.1: An architectural blueprint and a software development
process for security-critical lifelong systems. 2010.

[17] SecureChange Deliverable D3.2: Methodology for evolutionary requirements. 2010.

[18] SecureChange Deliverable D5.1: Evolution of existing methods and principles. 2009.

[19] Sindre, G. and Opdahl, A. L., Capturing security requirements through misuse cases. In
Proc. 14th Norwegian Informatics Conference (NIK'01), pages 219-230, 2001.

[20] Sindre, G. and Opdahl, A. L., Eliciting security requirements by misuse cases. In Proc.
TOOLS-PACIFIC, pages 120–131, 2000.

[21] Sindre, G. and Opdahl, A. L., Templates for misuse case description. In Proc. Workshop
of Requirements Engineering: Foundation of Software Quality (REFSQ'01), pages 125–
136, 2001.

