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Executive summary 

This document summarizes the work performed in Task 6.1 of Work Package 6 of the 
SecureChange project funded by the European Commission within the Seventh 
Framework Programme. 

The overall objective of Work Package 6 is the development of verification techniques 
for evolving systems, with a strong focus on the development time and run time phases 
of the software lifecycle. Task 6.1 focuses on development time. The objective of Task 
6.1 is the development of programming models that can ensure the absence of classes 
of vulnerabilities. A programming model consists of a set of programming guidelines 
designed to avoid a specific class of vulnerabilities. Source code annotations make the 
programming model explicit, and can support formal verification of compliance with the 
programming model. 

Two important results were obtained in Task 6.1. First, we developed a programming 
model to avoid so-called dependency-safety errors. A dependency-safety violation 
happens when a particular piece of code fails (throws an exception), and consequently  
other code that essentially depends on the successful completion of that piece of code 
is executed. Dependency safety violations are typically caused by improper exception 
handling. Our programming model allows a developer to make dependencies explicit 
through annotations, and provides more strict exception handling machinery such that 
dependency safety can be guaranteed. The theory behind this model has been 
published in the ECOOP 2009 conference, one of the top programming languages 
conferences in Europe. 

Second, we developed a programming model to avoid safety issues related to the 
dynamic loading and unloading of modules. These run-time modifications to the code 
of an application are an important technique to support evolvability of a software 
product, but they introduce several safety risks, including for instance the creation of 
dangling function pointers, pointing to code that is already unloaded. We developed a 
programming model and annotations in a variant of separation logic that allow a 
developer to verify the safety of the resulting system. This second result is work in 
progress, and its current status is summarized in a Technical Report of the department 
of computer science of the K.U.Leuven. 

These two models, as well as existing programming models, address specific software 
quality and security issues and can be used independently. However, an important 
advantage of the programming model approach is that it is relatively straightforward to 
combine models. Several models can be used together and can strengthen eachother. 

Since the ECOOP paper and the Technical Report mentioned above provide excellent 
descriptions of these two results, the core of the deliverable consists of these two 
publications. We first provide a small introduction situating the work in the entire 
SecureChange project, and a glossary defining the Work Package 6 use of terms. 
Then we add the two publications as appendices : they describe the core technical 
contributions. 
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1 Introduction  

The key objective of the SecureChange project is the development of tools and 
techniques to ensure lifelong compliance to evolving security, privacy and 
dependability requirements for long-running and evolving software-based systems. 

To achieve this objective, the project studies and improves the state-of-the-art in 
several phases of the software lifecycle, including requirements engineering, 
architectural design, detailed design, implementation, verification and testing.  

The focus of Work Package 6 of the project is on the implementation and verification 
phases, but it includes also the usage phase, as the question how to securely update 
and evolve running systems is very much in scope for Work Package 6. 

The same terminology (terms such as vulnerability, threat, countermeasure and so 
forth…) is used in all phases of the software lifecycle, but these terms often have a 
more specific meaning when specialized to, for instance, the development phase. To 
avoid ambiguities, this deliverable includes a glossary (see Section 4) of these 
security-specific terms, and how they are used in Work Package 6.  

Work Package 6 has three main lines of work. The first line (consisting of Tasks 6.1 
and 6.2) concerns the development of programming models that can ensure the 
absence of classes of vulnerabilities, and the development of proof-of-concept tools 
that can verify compliance with a programming model. Such models and tools support 
secure and correct evolution of the code and changes to the code by making implicit 
developer assumptions explicit in annotations, and by checking that these assumptions 
are not violated during code evolution. The first half of this line of work (Task 6.1) is 
finished, and the results are reported in this deliverable. 

The second line of work (Tasks 6.3, 6.4 and 6.5) concerns the development of on-
device verification algorithms. This includes techniques to verify the information flow 
security of dynamically loaded code, and extensions to the Security-by-Contract 
paradigm for information flow security. This line of work is ongoing, and the first results 
will be made available at month 18 of the project in Deliverable D6.3. 

Finally, the third line of work (Task 6.6) studies the interplay between development-
time verification and on-device verification. This line of work will only start at the end of 
year 2 of the project. 

The glossary provided in Section 4 covers the terms relevant to all these three lines of 
work. But all the other content of this deliverable is specific to the first line of work, 
development time verification using programming models. 
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2 Technical results 

A programming model consists of a set of programming guidelines designed to avoid a 
specific class of vulnerabilities. Source code annotations make the programming model 
explicit, and can support formal verification of compliance with the programming model. 

As such, programming models are very similar to pluggable type systems [3]. A wide 
variety of programming models or related type systems already existed at the start of 
the SecureChange project, including systems that deal with concurrency vulnerabilities 
or bugs [4,5], aliasing bugs [6], or code access security vulnerabilities [7].  

In the context of SecureChange, two new results were obtained, and we discuss these 
in the next two subsections. 

 

2.1 Dependency safety 
First, we developed a programming model to avoid so-called dependency-safety 
errors. A dependency-safety violation happens when a particular piece of code fails 
(throws an exception), and consequently  other code that essentially depends on the 
successful completion of that piece of code is executed. Dependency safety violations 
are typically caused by improper exception handling. The Ariane 5 crash is a well-
known example of the fact that proper exception handling is a major concern during 
code evolution. 

This line of work was ongoing when the SecureChange project started, and we 
finalized the programming model and annotations in the first five months of the project. 
Our programming model allows a developer to make dependencies explicit through 
annotations, and provides more strict exception handling machinery such that 
dependency safety can be guaranteed.  

The theory behind this model is described in detail in an ECOOP 2009 publication [1]. 
This publication is included verbatim in the Appendix of this deliverable. Ongoing and 
future work includes a further practical validation, and the study of the interaction 
between dependency safety and information flow security as studied in the other Tasks 
in WP 6. 

 

2.2 Safety of unloadable modules 
Second, we developed a programming model to avoid safety issues related to the 
dynamic loading and unloading of modules. These run-time modifications to the code 
of an application are an important technique to support evolvability of a software 
product, but they introduce several safety risks, including for instance the creation of 
dangling function pointers, pointing to code that is already unloaded.  

This line of work is still ongoing, but the programming model and annotations are 
stable. The annotations are done in a variant of separation logic. The current status of 
this work is described in a Technical Report [2]. This technical report is included 
verbatim in the Appendix of this deliverable. 
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3 Conclusion 

Task 6.1 of the SecureChange project has completed on schedule. We have designed 
two programming models and the corresponding annotations, one to ensure 
dependency safety, and another one to guarantee safety of dynamically loadable and 
unloadable code. 

Task 6.2 will build on this work and develop a prototype verifier for at least one of these 
programming models, and evaluate it on one of the SecureChange case studies. Two 
case studies are under consideration: the POPS case study, where provable absence 
of certain classes of run time exceptions in JavaCard code is an important concern, 
and the HOMES case study, where the safety of the software on the home gateway 
(both C code and Java code) in the presence of evolution (for instance loading / 
unloading of modules) is a concern. 
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4 Glossary 

Attack: the execution of a program or program module with exploit input. 

Contract: a specification of the security-relevant behaviour of a program or program 
module. Examples include: information flow contracts that specify how information can 
flow from inputs to outputs, or access control contracts that specify the possible traces 
of security-relevant events that a program could generate. 

Countermeasure: a technique to prevent, remove or tolerate vulnerabilities.  

Exploit: A set of inputs to, or an interaction with a program or program module that 
triggers a vulnerability, and hence makes the program (module) deviate from its 
contract. 

Information flow: how outputs of a program (directly or indirectly) depend on inputs of 
a program.  

Matching (policy-contract): the process of checking whether a contract is compatible 
with a policy: is everything that is specified as possible security-relevant behaviour by 
the contract also allowed by the policy. For access control contracts and policies, 
where security-relevant behaviour can be formalized as a set of allowable traces of 
security-relevant events, matching corresponds to set inclusion. 

Modular verification: a verification process that verifies each module separately. 
While verifying a module, the verification relies only on the contracts of dependent 
modules, not on their implementation. Modular verification can make the verification 
process more scalable to large programs, and can make it lighter for new versions of 
the system. 

Module: a logically self-contained part of a program. Packages, classes, or methods 
are examples of modules of different granularity. Modules have an implementation and 
a specification. The security-relevant part of the specification is called the contract. 

Policy: a specification of the security constraints that a deployment context wishes to 
impose upon a program. Examples include: information flow policies that specify how 
information is allowed to flow from inputs to outputs, or access control policies that 
specify the traces of security-relevant events that a program is allowed to generate. 

Programming model: a programming model is a set of guidelines on how to use the 
features of a given programming language. These guidelines will typically be designed 
in such a way that they avoid the introduction of certain classes of vulnerabilities in the 
code. 

Verification (code-contract): the process of checking the compliance of a program or 
program module with its contract. 

Vulnerability: a vulnerability is a security-relevant bug in a program, i.e. the program is 
not satisfying its contract. 
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Failboxes: Provably Safe Exception Handling?

Bart Jacobs?? and Frank Piessens

Department of Computer Science, Katholieke Universiteit Leuven, Belgium
{bart.jacobs,frank.piessens}@cs.kuleuven.be

Abstract. The primary goal of exception mechanisms is to help ensure
that when an operation fails, code that depends on the operation’s suc-
cessful completion is not executed (a property we call dependency safety).
However, the exception mechanisms of current mainstream programming
languages make it hard to achieve dependency safety, in particular when
objects manipulated inside a try block outlive the try block.
Many programming languages, mechanisms and paradigms have been
proposed that address this issue. However, they all depart significantly
from current practice. In this paper, we propose a language mechanism
called failboxes. When applied correctly, failboxes have no significant im-
pact on the structure, the semantics, or the performance of the program,
other than to eliminate the executions that violate dependency safety.
Specifically, programmers may create failboxes dynamically and execute
blocks of code in them. Once any such block fails, all subsequent at-
tempts to execute code in the failbox will fail. To achieve dependency
safety, programmers simply need to ensure that if an operation B de-
pends on an operation A, then A and B are executed in the same failbox.
Furthermore, failboxes help fix the unsafe interaction between locks and
exceptions and they enable safe cancellation and robust resource cleanup.
Finally, the Fail Fast mechanism prevents liveness issues when a thread
is waiting on a failed thread.
We give a formal syntax and semantics of the new constructs, and prove
dependency safety. Furthermore, to show that the new constructs are
easy to reason about, we propose proof rules in separation logic. The
theory has been machine-checked.

1 Introduction

If a program is seen as a state machine, a programmer’s job may be seen as
writing code to deal with each of the states that the program may reach. How-
ever, programmer time is limited and some states are less likely to occur during
production than others. Therefore, in many projects it is useful to designate
the most unlikely states as failure states and to deal with all failure states in a
uniform way, while writing specific code only for non-failure (or normal) states.

An extreme form of this approach is to simply ignore failure states and not
care what the program does when it reaches a failure state (i.e., when it fails).
? We used the term subsystems in preliminary work.

?? Bart Jacobs is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO).
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This is often what happens when subroutines indicate failure conditions as spe-
cial return values, and programmers have no time to write code at call sites to
check for them.

A major problem with this approach is that it is unsafe: a failure may lead to
the violation of any and all of the program’s intended safety properties. Specifi-
cally, the approach violates dependency safety, the property which says that when
an operation fails, code that depends on the operation’s successful completion
is not executed.

To fix this, modern programming languages offer constructs that make it easy
for programmers to indicate that a state is a failure state, and deal with failure
states by terminating the program by default. The underlying assumption is that
termination is always safe. For example, in Java, a failure state is indicated by
throwing an unchecked exception. We will focus on the Java language in this
paper; the related work section discusses other languages.

Whereas by default, when a program throws an exception it terminates im-
mediately, the programmer can override this default through the use of try-catch
statements and try-finally statements. Furthermore, in a multithreaded program,
when a thread’s main method completes abruptly (i.e., an exception was thrown
and not caught during its execution), only that thread, not the entire program,
is terminated. Also, when a synchronized block’s body completes abruptly, the
lock is released before the exception is propagated further.

These deviations from strict termination behavior are useful and are used for
two reasons. Firstly, not all exceptions indicate failure. Sometimes, programmers
throw and catch exceptions to implement the program’s functional behavior.
Typically, in Java, checked exceptions are used for this. Secondly, programmers
sometimes wish to increase the program’s robustness by not considering the
program to be a single unit of failure but rather by identifying multiple smaller
units of failure. Common examples are extensible programs, where poorly written
or malicious plugins (such as applets or servlets) should not affect the base
system; and command-processing applications (such as request-response-based
servers, GUI applications, or command-line shells) where a failure during the
processing of a command should simply cause an error response to be returned,
while continuing to process other commands normally.

However, by continuing to execute after a failure, the risk of safety violations
reappears. In particular, safety violations are likely if the code that fails leaves a
data structure in an inconsistent state and this data structure is then accessed
during execution of a finally block or after the exception is caught, or by another
thread. In other words, there is a safety risk if a try block manipulates an object
that outlives the try block. More generally, if we define dependency safety as
the property that if an operation fails, no code that depends on the operation’s
successful completion is executed, then dependency safety may be violated if
pieces of code outside a try block depend on particular pieces of code inside the
try block either not executing at all or executing to completion successfully. This
is the problem we address in this paper.
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To remedy this, we propose a language mechanism called failboxes. Program-
mers may create failboxes dynamically and execute blocks of code in them. Once
any such block fails, all subsequent attempts to execute code in the failbox will
fail. To achieve dependency safety, programmers simply need to ensure that if an
operation B depends on an operation A, then A and B are executed in the same
failbox. Furthermore, failboxes help fix the unsafe interaction between locks and
exceptions and they enable safe cancellation and robust resource cleanup. Fi-
nally, the Fail Fast mechanism prevents liveness issues in the presence of failure
in cooperating concurrent computations.

Failboxes are very lightweight: a failbox can be implemented as an object
with a boolean field indicating if the failbox has failed, and a parent pointer.
Executing a code block in a failbox essentially means that before and after
executing the block, the thread-local variable that designates the current failbox
is updated, and before a failbox is made current, it is checked that it has not
failed.

We give a formal syntax and semantics of the new constructs, and prove
dependency safety. Furthermore, to show that the new constructs are easy to
reason about, we propose separation logic proof rules and prove their soundness.

The rest of the paper is structured as follows. In Section 2, we illustrate
the problem with an example and discuss existing approaches. In Section 3, we
introduce failboxes. We show additional aspects and benefits of the approach
for multithreaded programs in Section 4. Section 5 briefly discusses how the
approach enables safe cancellation and robust compensation. To show that it is
easy to reason about the new constructs, we propose separation logic proof rules
for the envisaged usage patterns in Section 6. We end the paper with sections
on implementation issues (Section 7), related work (Section 8), and a conclusion
(Section 9).

The theory of this paper has been machine-checked using the Coq proof
assistant [12].

2 Problem Statement

Consider the example program in Figure 1. It shows a program that continuously
receives commands and processes them. The code for processing commands is
not shown, except that it involves calls of compute and calls of addEntry on a
Database object db that is shared across all command executions. If the process-
ing of a command fails, e.g. because it requires too much memory, the exception
is caught, an error message is shown to the user, and the next command is
received.

This program is unsafe. Specifically, some executions of this program violate
the intended safety property that at the start of each loop iteration, object
db is consistent, i.e., satisfies the property that count is not greater than the
length of entries. In particular, consider an execution where method addEntry
is called in a state where entries is full. This means count equals entries.length.
As a result, after incrementing count , addEntry will attempt to allocate a new,
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class Database {
int count ;
int[] entries := new int[10];
/* invariant: count ≤ entries.length */
void addEntry(int entry) {

count++;
if (count = entries.length + 1) {

int[] es := new int[count ∗ 2]; // *** A ***
System.arraycopy(entries, 0, es, 0, entries.length);
entries := es;
}
entries[count − 1] := entry ; // *** B ***

} . . . }
class Program {

public static void main(String [] args) {
Database db := new Database();
while (true)

/* invariant: db is consistent */
{

String cmd := readCommand();
try {
· · · compute(cmd); · · ·
· · · db.addEntry(· · ·); · · ·
} catch (Throwable e) { showErrorMessage(e); }

}} . . . }

Fig. 1. An unsafe program

larger array. Now assume there is not enough memory for this new array and an
OutOfMemoryError occurs at location A. At this point, count is greater than the
length of entries and the Database object is inconsistent. Next, the exception is
caught in method main and the loop is continued, violating the safety property.

Note: In this case, the safety violation results in an ArrayIndexOutOfBounds-
Exception at location B in each subsequent call of addEntry ; however, in general,
safety violations might remain undetected and lead to data corruption, incorrect
results, or sending incorrect commands to hardware devices.

The following approaches exist to deal with this complication:

– Never catch unchecked exceptions. Never catching unchecked excep-
tions makes it easier to preserve safety properties, since the many implicit
control flow paths created by catching unchecked exceptions are avoided.
However, catching unchecked exceptions can be useful, as in the example.
Note also that try-finally blocks are equivalent to try-catch blocks that
catch unchecked exceptions; specifically, assuming S1 does not jump out of
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the try block, a statement

try { S1 } finally { S2 }

is equivalent to

try { S1 } catch (Throwable t) { S2 throw t; } S2

and is subject to the same complication: S2 might depend on the successful
completion of certain sub-computations within S1. Never catching unchecked
exceptions would imply never using try-finally blocks, or modifying their
semantics so that they ignore unchecked exceptions. The semantics of syn-
chronized blocks would need to be updated similarly.

– Always maintain consistency. It is often possible to ensure that objects
used across try-catch blocks, like the Database object in the example, are in a
consistent state at all times. Often it is sufficient to reorder assignments; e.g.,
in the example, moving the count increment after the assignment to entries
preserves consistency. Another approach is to use a functional programming-
like approach, where a new object state is built up separately and then
installed into the object using a single assignment. In the example, method
addEntry would return a new Database object rather than updating the
existing one. Yet another approach is to use transaction-like technologies,
such as software transactional memory [19, 5]. However, these approaches
either require the programmer to perform non-trivial additional reasoning
and/or programming work, or impose a potentially significant performance
overhead.

– Never fail during critical sections. It might be possible in some cases
to guarantee absence of failure at points where failure would violate safety.
This requires careful programming to avoid operations that might encounter
resource or implementation limitations, such as heap or stack memory al-
locations or operations on bounded integers, or to move these operations
out of the critical section. Furthermore, this might require virtual machine
support if the virtual machine may perform resource allocations implicitly.
For example, the .NET Framework’s JIT compiler may allocate memory at
any time to store a newly compiled piece of code. Therefore, starting with
version 2, the .NET Framework offers constructs to “prepare” a piece of
code that must execute without failure [21]. However, this approach imposes
a significant burden on the programmer.

– Ensure dependent code is not executed. In this approach, steps are
taken to ensure that if a computation fails with an unchecked exception,
then no computations that depend on the failed computation’s successful
completion ever get to run. There are at least two ways to achieve this:
• Use separate threads. In this approach, threads are adopted as the

units of failure. Within a thread, unchecked exceptions are never caught;
that is, an exception in the thread causes the entire thread to die. All
data structures are local to threads. Instead of running a block of code
in a try-catch block, it is run in a separate thread. During this time, the
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original thread waits for the termination of the child thread; additionally,
the original thread may accept messages on a message queue. If the child
thread needs to perform an operation whose failure should cause the
parent thread to fail (such as an addEntry call on the Database object),
the child thread may perform a remote procedure call into the parent
thread via the parent thread’s message queue. This is more or less the
approach used in operating systems, in the Erlang language [1], and in
the SCOOP multithreading approach for Eiffel [17].
• Guard dependent code manually. The programmer can manually

arrange to ensure that dependent code is not executed. For example, the
programmer could associate a boolean flag with each object used across
try-catch blocks that tracks whether the object is in a consistent state,
and check this flag before accessing the object [13]. If the flag is false, an
exception is thrown.

In this paper we present a new approach in the fourth category, which, like
the use of separate threads and manually guarding dependent code, supports
catching exceptions and does not require that consistency be maintained always
or that failures be avoided, but which has less programming and run-time over-
head than the use of separate threads and which has less programming overhead
than manually guarding dependent code.

3 Failboxes

In our approach, the language is extended with a notion of failboxes. Constructs
are added for creating a new failbox and for running a piece of code in a desig-
nated failbox. As soon as one such piece of code fails (i.e., completes abruptly
with an unchecked exception), any subsequent attempt to run code in the failbox
fails. To ensure dependency safety, the programmer simply needs to ensure that
if a computation B depends on a computation A, then A and B run in the same
failbox.

To facilitate composition of program modules, failboxes are ordered hierar-
chically. When creating a new failbox, a parent may be specified. If an exception
occurs in a failbox, both it and its transitive children are marked as failed.

3.1 Syntax and semantics

The syntax of the new constructs is as follows:

s ::= . . .
| x := currentfb; | x := newfb; | x′ := newfb(x);
| enter (x) { s } catch { s′ }

where s ranges over statements, s ranges over sequences (i.e., sequential compo-
sitions) of statements, and x and x′ range over local variable names.
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Note: For simplicity, we ignore checked exceptions and exception objects in
the formal developments.

A program state is a tuple of the form

(L,Σ,Φ, T )

where L, the lock map, is a partial function that contains a pair (o, t) if thread
t holds the lock of object o; Σ is a partial function that maps each allocated
failbox to its parent failbox (and a root failbox to itself); Φ is the set of failed
failboxes; and T is a partial function that maps each thread to its current state.
(We omit the heap since our constructs do not interact with it.)

A thread state is a tuple of the form

(f, V, s, b, F )

where f is the thread’s current failbox, V is a total function that maps each
variable name to a value, s, the continuation, is the sequence of statements to
be executed by the thread, b is the sequence of enclosing blocks, and F is the
sequence of enclosing activation records.

The syntax of an enclosing block is as follows:

b ::= enter (f) catch { s } s′ | synchronized (o); s

where an enclosing enter block records the failbox f that was current prior to
the enter statement (not the failbox that was entered), the catch block body
s, and the statements s′ that are to be executed after completion of the enter
statement; and an enclosing synchronized block records the object o whose lock
was acquired, and the statements s that are to be executed after completion of
the synchronized statement.

In the initial program state of a program with main method body s, the lock
map is empty, there is a single failbox f , whose parent is itself, no failbox is
marked as failed, and there is one thread t whose current failbox is f ; all of the
thread’s local variables are bound to null, and it has no enclosing blocks and no
enclosing activation records:

main s

initial (∅, {(f, f)}, ∅, {(t, (f, (λx.null), s, ε, ε))})

The statement x := currentfb; assigns the current failbox to variable x:

CurrentFB
(t, (f, V, x := currentfb; s, b, F )) ∈ T

(L,Σ,Φ, T )→ (L,Σ,Φ, T (t := (f, V (x := f), s, b, F )))

The statement x := newfb; creates a new root failbox and assigns it to x:

NewFB-Root
(t, (f, V, x := newfb; s, b, F )) ∈ T f ′ /∈ dom(Σ) Σ′ = Σ(f ′ := f ′)

(L,Σ,Φ, T )→ (L,Σ′, Φ, T (t := (f, V (x := f ′), s, b, F )))
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If x is bound to a failbox f ′ and f ′ is not marked as failed, the statement
x′ := newfb(x); creates a new child failbox of f ′ and assigns it to x′:

NewFB-Child
(t, (f, V, x′ := newfb(x); s, b, F )) ∈ T

V (x) = f ′ f ′ /∈ Φ f ′′ /∈ dom(Σ) Σ′ = Σ(f ′′ := f ′)

(L,Σ,Φ, T )→ (L,Σ′, Φ, T (t := (f, V (x′ := f ′′), s, b, F )))

If x is bound to a failbox f ′, and f ′ is not marked as failed, then statement
enter (x) { s′ } catch { s′′ } records the current failbox, the catch block body
s′, and the current continuation in a new enclosing block, makes f ′ the current
failbox, and starts executing the enter block body s′:

Enter
(t, (f, V, enter (x) { s′ } catch { s′′ } s, b, F )) ∈ T

V (x) = f ′ f ′ /∈ Φ b
′

= (enter (f) catch { s′′ } s) · b
(L,Σ,Φ, T )→ (L,Σ,Φ, T (t := (f ′, V, s′, b

′
, F )))

On normal completion of an enter block body, the former current failbox is
restored and the catch block is skipped, provided that the former current failbox
is not marked as failed:

Enter-Complete-Normal
(t, (f, V, ε, (enter (f ′) catch { s′ } s′′) · b, F )) ∈ T f ′ /∈ Φ

(L,Σ,Φ, T )→ (L,Σ,Φ, T (t := (f ′, V, s′′, b, F )))

where ε denotes the empty sequence.
We model the occurrence of an exception as the replacement of the current

continuation with a throw statement. An exception can occur at any time; this
reflects the fact that in Java a virtual machine error can be thrown at any time
[10, §11.3.2].

Fail
(t, (f, V, s, b, F )) ∈ T s 6= throw;

(L,Σ,Φ, T )→ (L,Σ,Φ, T (t := (f, V, throw; , b, F )))

If variable x is not bound to a failbox, or it is bound to a failbox but the fail-
box is marked as failed, then both x′ := newfb(x); and enter (x) { s } catch { s′ }
throw an exception (of type FailboxException); this is covered by rule Fail.

On abrupt completion of an enter block body with an exception, the current
failbox and its descendants are marked as failed, the former current failbox is
restored, and the catch block is executed, provided the former current failbox is
not marked as failed:

Enter-Complete-Abrupt
(t, (f, V, throw; , (enter (f ′) catch { s′ } s′′) · b, F )) ∈ T

Φ′ = Φ ∪ (Σ−1)∗(f) f ′ /∈ Φ′

(L,Σ,Φ, T )→ (L,Σ,Φ′, T (t := (f ′, V, s′ s′′, b, F )))
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where (Σ−1)∗(f) denotes the set of f ’s descendants, including f itself.
On normal completion of an enter block body, if the former current fail-

box is marked as failed, it is restored but the catch block is skipped and a
FailboxException exception is thrown:

Enter-Complete-Normal-Fail
(t, (f, V, ε, (enter (f ′) catch { s′ } s′′) · b, F )) ∈ T f ′ ∈ Φ

(L,Σ,Φ, T )→ (L,Σ,Φ, T (t := (f ′, V, throw; , b, F )))

On abrupt completion of an enter block body with an exception, if after
marking the current failbox as failed, the former current failbox is marked as
failed, the former current failbox is restored but the catch block is skipped and
a FailboxException exception is thrown:

Enter-Complete-Abrupt-Fail
(t, (f, V, throw; , (enter (f ′) catch { s′ } s′′) · b, F )) ∈ T

Φ′ = Φ ∪ (Σ−1)∗(f) f ′ ∈ Φ′

(L,Σ,Φ, T )→ (L,Σ,Φ′, T (t := (f ′, V, throw; , b, F )))

3.2 Syntactic sugar

We remove try-catch statements and try-finally statements from the language
as separate statements. Instead, we define them as syntactic sugar over the new
constructs. Specifically, the statement

try { s } catch { s′ }

is defined as

x := currentfb; x′ := newfb(x); enter (x′) { s } catch { s′ }

where x and x′ are fresh. That is, a try-catch statement executes the try block
in a new child failbox of the current failbox.

The statement
try { s } finally { s′ }

is defined as
try { s } catch { s′ throw; } s′

This means that a try-finally statement executes its try block in a new child
failbox of the current failbox.

Furthermore, we define the following shorthands:

enter (x) { s } ≡ enter (x) { s } catch { throw; }
reenter (x) { s } ≡ enter (x) { s } catch {}

In words, an enter statement propagates exceptions, and a reenter statement
does not. Note: in real implementations, a reenter statement would not cause
exception information to be lost, since the exception object would be associated
with the failbox at the time the failbox is marked as failed, and an API would
be provided to retrieve the stored exception object of a failed failbox.
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3.3 Terminology

We use the following terminology: We say that an event in a thread t occurs
in a failbox f or a statement is executed (or executes) in f if the event occurs
or the statement execution starts at a time when f is the current failbox of t.
We say that a failure occurs in t when an unchecked exception is thrown (i.e.,
the continuation of t is a throw statement). We say that a statement execution
fails if it completes abruptly because of an unchecked exception. We say that a
failbox f fails when a failure occurs in f . We say that an execution step enters
a failbox f if f is the current failbox after the step and was not the current
failbox before the step. Similarly, we say that an execution step leaves a failbox
f if is not the current failbox after the step and was the current failbox before
the step.

3.4 Example

The approach is illustrated and motivated by the example in Figure 2. (Note:
In the examples we use a more conventional syntax.) It shows how the unsafe
program of Figure 1 can be made safe using failboxes. A failbox f is created and
then both the main loop and calls of addEntry are executed in f . This ensures
that if a call of addEntry fails, the main loop terminates.

The example motivates why on entry to a try block, the failbox in which the
try-catch statement executes is no longer considered the current failbox. This
ensures that failures in method compute are properly caught by the try-catch
statement, and do not cause the program to terminate.

4 Multithreading

4.1 Synchronized statements: safety issues

One common way that the strict termination approach of dealing with failures is
overridden, is through the use of synchronized blocks. A synchronized (o) S
block in Java acquires the lock of object o, executes statement S, and then
releases the lock of o, even if S failed. This helps prevent deadlocks, but it
creates a safety risk. In particular, if a failure occurs while o is inconsistent, the
commonly intended safety property that shared objects whose lock is not held
are consistent, is violated.

The problem is illustrated by the example program in Figure 3. It is a multi-
threaded version of the original example in Figure 1. Rather than processing each
command before receiving the next command, the program receives a command,
spawns a thread to process it, and immediately receives the next command. The
Database object is shared by all command processing threads; accesses to the
object are synchronized using a synchronized block.

This program is unsafe. In particular, in some executions, the intended safety
property that whenever a shared object’s lock is not held by any thread, the ob-
ject is consistent, is violated. This property is relied on to guarantee that method
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root child

Failbox

class Program {
public static void main(String [] args) {

Failbox f := Failbox .getCurrent();
Database db := new Database();
while (true)

/* invariant: db is consistent */
{

String cmd := readCommand();
try {
· · · compute(cmd); · · ·
enter (f) {

db.addEntry(· · ·);
}
· · ·

} catch (Throwable e) {
showErrorMessage(e);
}

}
}
. . .

}

Fig. 2. The example of Figure 1, fixed using failboxes. When an addEntry call fails,
failbox f is marked as failed. When control subsequently exits the try block, this is
considered an attempt to enter f ; therefore, a FailboxException is thrown. As a result,
the catch block is skipped, the loop is exited, and the program terminates safely. The
sequence diagram shows the failbox transitions.

addEntry is called only on objects that are consistent. Specifically, suppose a fail-
ure occurs in method addEntry while the Database object is inconsistent. This
causes the lock to be released. Subsequent command processing threads that
acquire the lock will then see the Database object in an inconsistent state.

4.2 Failboxes approach for safe synchronized statements

Failboxes can be used to write safe lock-based multithreaded programs, by asso-
ciating each shared object with a failbox and running the code that accesses a
shared object within the associated failbox. This way, when a failure occurs, the
failbox is marked as failed, so that when another thread subsequently attempts
to enter the failbox in order to access the object, an exception is thrown and the
thread is prevented from seeing inconsistent state. The modified safety property
is that whenever no thread holds a shared object’s lock, either the object is
consistent or its associated failbox is marked as failed.
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class Program {
public static void main(String [] args) {

final Database db := new Database();
while (true) {

final String cmd := readCommand();
new Thread() {

public void run() {
try {
· · · compute(cmd); · · ·
· · · synchronized (db) { db.addEntry(· · ·); } · · ·

} catch (Throwable e) { showErrorMessage(e); }
}
}.start();

}
}
. . .

}

Fig. 3. An unsafe program. A failure in compute is handled correctly, but if a failure
occurs in method addEntry while the Database object is inconsistent, the object’s lock
is released, causing threads that subsequently acquire the lock to see the object in an
unexpected state, violating safety.

The approach is illustrated in Figure 4. It is the example of Figure 3, made
safe using failboxes. Specifically, the example uses an enter statement to execute
the addEntry calls in the main thread’s root failbox. When an addEntry call fails,
this failbox is marked as failed before the lock is released. When another thread
subsequently acquires the lock and attempts to enter the failbox, an exception
is thrown, so that the thread is prevented from unsafely calling addEntry .

4.3 Multithreaded failboxes

In a multithreaded program, it is possible for computations in multiple threads
to be executing in the same failbox f concurrently. If this happens, we say
f is multithreaded. The question then arises as to what happens when one
of these computations fails. There are two distinct concerns involved in this
matter: preserving the program’s intended safety properties, and ensuring useful
progress.

4.4 Multithreaded failboxes: Safety

In a well-written program, a failure in one thread should not have safety im-
plications for operations executing concurrently in other threads. Specifically,
in a data-race-free program, where the program synchronizes accesses to shared
memory using the language’s synchronization constructs, an operation can see
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class Program {
public static void main(String [] args) {

final Failbox f := Failbox .getCurrent();
final Database db := new Database();
while (true) {

final String cmd := readCommand();
new Thread() {

public void run() {
try {
· · · compute(cmd); · · ·
· · · synchronized (db) { enter (f) { db.addEntry(· · ·); } } · · ·
} catch (Throwable e) { showErrorMessage(e); }

}
}.startInCurrentFailbox ();

}
}
. . .
}

Fig. 4. The example of Figure 3, made safe using failboxes. If a call of addEntry fails,
failbox f is marked as failed and subsequent attempts by other threads to enter the
failbox will fail. Furthermore, by the Fail Fast feature, a stop f signal is sent to all
threads running in the failed failbox f or a descendant of f . In the example, this means
the program terminates.

the data that was being manipulated by a computation that failed only if the
operation is not concurrent with the failure, i.e., the operation was synchronized
with the failed computation. (Formally, the failure happens-before the operation.)
Therefore, to ensure safety, it is sufficient that synchronization constructs per-
form the necessary failboxes bookkeeping to ensure that if a failure happens in
a failbox, no operation that is ordered after this failure through synchronization
runs in this failbox. To achieve this, we specify the semantics of synchronized
statements with respect to failboxes as follows: after acquiring the lock, the
statement checks that the current failbox has not failed; otherwise, it throws a
FailboxException. Furthermore, before releasing the lock, if the body completed
abruptly with an exception, the current failbox is marked as failed. The step
rules are shown in Figure 5.

4.5 Properties

We are now ready to state and sketch the proof of the main properties of the
failboxes approach.

We first define some terms. An execution is a finite or countably infinite
sequence of program states. An execution point is a nonnegative integer that
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Synchronized
(t, (f, V, synchronized (x) { s′ } s, b, F )) ∈ T

V (x) = o o /∈ dom(L) f /∈ Φ b
′

= (synchronized (o); s) · b

(L,Σ,Φ, T )
t:acq(o)→ (L(o := t), Σ, Φ, T (t := (f, V, s′, b

′
, F )))

Synchronized-Reentrant
(t, (f, V, synchronized (x) { s′ } s, b, F )) ∈ T V (x) = o (o, t) ∈ L

(L,Σ,Φ, T )→ (L,Σ,Φ, T (t := (f, V, s′ s, b, F )))

Synchronized-Complete-Normal
(t, (f, V, ε, (synchronized (o); s) · b, F )) ∈ T

(L,Σ,Φ, T )
t:rel(o)→ (L \ {(o, t)}, Σ, Φ, T (t := (f, V, s, b, F )))

Synchronized-Complete-Abrupt
(t, (f, V, throw; , (synchronized (o); s) · b, F )) ∈ T

Φ′ = Φ ∪ (Σ−1)∗(f) T ′ = T (t := (f, V, throw; , b, F ))

(L,Σ,Φ, T )
t:rel(o)→ (L \ {(o, t)}, Σ, Φ′, T ′)

Fig. 5. Step rules for synchronized statements

serves as an index into an execution. A thread execution point (k, t) is a pair of
an execution point k and a thread identifier t.

Definition 1 (Happens-Before). The happens-before relation hbE→ on thread
execution points of an execution E = C0, C1, . . . is the smallest transitive relation
that satisfies the following properties:

– Any thread execution point of a thread t happens-before any subsequent thread
execution point of t

k1 < k2 ⇒ (k1, t)
hbE→ (k2, t)

– If execution step k1 is a release of some lock o by some thread t1, and sub-
sequent execution step k2 is an acquire of o by some thread t2, then (k1, t1)
happens-before (k2 + 1, t2)

Ck1

t1:rel(o)→ Ck1+1 ⇒ Ck2

t2:acq(o)→ Ck2+1 ⇒ k1 < k2 ⇒ (k1, t1) hbE→ (k2 + 1, t2)

– If at execution step k thread t starts a new thread t′ (see Figure 6), then
(k, t) happens-before (k + 1, t′)

Ck
t:fork(t′)→ Ck+1 ⇒ (k, t) hbE→ (k + 1, t′)

The Main Lemma states that once an exception occurs in a failbox, no code
executes in that failbox “afterwards”.
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Lemma 1 (Main Lemma). Consider an execution E of a program π of the
extended language, and consider two thread execution points (k1, t1) and (k2, t2)
in E, such that (k1, t1) happens-before (k2, t2). If t1 is executing in some failbox
f1 in state k1, and t2 is executing in some descendant f2 of f1 in state k2, then
if t1 is failing in state k1, then t2 is failing in state k2.

exec(π,E)⇒ (k1, t1) hbE→ (k2, t2)⇒
Ck1 = (L1, Σ1, Φ1, T1)⇒ T1(t1) = (f1, V1, throw; , b1, F 1)⇒
Ck2 = (L2, Σ2, Φ2, T2)⇒ T2(t2) = (f2, V2, s2, b2, F 2)⇒

f2 ∈ (Σ−1
2 )∗(f1)⇒ s2 = throw;

Proof. It suffices to prove for every prefix of some path from (k1, t1) to (k2, t2)
in the happens-before graph, that at the thread execution point (k3, t3) at the
end of the prefix, one or more of the following hold:

– the thread is failing and the current failbox is f1
– failbox f1 and its descendants have been marked as failed and one or more

of the following hold:
• the current failbox is not f1 or a descendant of f1, or
• the thread is failing.

This can be proved easily by induction on the length of the prefix and case
analysis on the last edge.

Now consider an execution E of a program π and a dependency relation D on
the thread execution points of E. We say E uses failboxes correctly with respect
to D, if whenever thread execution point p2 depends on thread execution point
p1, the current failbox at p2 is a descendant of the current failbox at p1. We
say E is dependency-safe with respect to D if whenever p2 depends on p1, and
p1 happens-before p2, and p1 is failing, then p2 is failing. We then have the
Soundness Theorem: if E uses failboxes correctly with respect to D, then E is
dependency-safe with respect to D. This follows directly from the Main Lemma.

A machine-checked proof of these properties is available online [12].

4.6 Multithreaded failboxes: Ensuring useful progress

Even if a computation is safe, it might not be contributing to the useful work of
the application. Specifically, if multiple computations are running in the same
failbox, then this is taken to mean that they depend on each other for useful
progress. As a result, if one of them fails, there is no point for the others to
continue, so they should be stopped to free up CPU cycles, memory, and other
resources these computations may be using. Therefore, in our approach, at the
time a failbox f is marked as failed, a stop f signal is sent to all threads currently
running in f or a descendant of f . When the signal arrives, this results in a
FailboxException being thrown in the target thread, provided it is still running
in f or a descendant. To allow efficient implementations, we do not impose timing
constraints on the delivery of the signal, except that it must arrive eventually.
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We call this mechanism the Fail Fast mechanism (after the Fail Fast principle
[20]).

The usefulness of the Fail Fast mechanism is illustrated by the example in Fig-
ure 4. Once failbox f has failed, all subsequent attempts to access the database
fail. Assuming most commands access the database, this means the program’s
functionality is severely degraded. Therefore, it seems appropriate to escalate
the failure and terminate the program. This typically signals a system adminis-
trator or service management daemon to restart the program in a clean state,
hopefully restoring full service. In the example, this behavior is achieved by run-
ning not just the addEntry calls, but the main loop as well, in failbox f . When
an addEntry call fails, an asynchronous exception is thrown in the main thread,
which causes the loop to terminate.

In fact, since the existing command processing threads are unlikely to be
able to run to completion successfully, it makes sense to terminate these as well.
This is achieved in the example by running the command processing threads in
failbox f as well, by using method startInCurrentFailbox (added by our language
extension) instead of start to start these threads. (To ensure backward compat-
ibility, method start starts the new thread in a newly created root failbox, so
that failure of the new thread does not cause a stop signal to be sent to the
original thread.)

In the example, the failbox hierarchy is as follows. Failbox f , a root failbox,
has one child for each try block execution. This ensures, as before, that exceptions
in method compute do not cause the program to terminate.

The step rules for thread creation are shown in Figure 6. In the formal
language, statement fork corresponds with method startInCurrentFailbox , and
fork∗ corresponds with method start .

Fork
(t, (f, V, fork { s′ } s, b, F )) ∈ T

t′ /∈ dom(T ) T ′ = T (t := (f, V, s, b, F ), t′ := (f, V, s′, ε, ε))

(L,Σ,Φ, T )
t:fork(t′)→ (L,Σ,Φ′, T ′)

Thread-Complete-Abrupt
(t, (f, V, throw; , ε, ε)) ∈ T f /∈ Φ Φ′ = Φ ∪ (Σ−1)∗(f)

(L,Σ,Φ, T )→ (L,Σ,Φ′, T )

fork∗ { s } ≡ fork { x := newfb; reenter (x) { s } } where x is fresh

Fig. 6. Step rules for thread creation
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4.7 Wait dependency safety

A sub-concern of the concern of ensuring useful progress is the concern of en-
suring progress. Specifically, one of the correctness properties that are difficult
to achieve in the presence of unchecked exceptions is wait dependency safety,
the property that if, in a given program execution, a wait operation W depends
on a computation A, then, assuming that W terminates if A does not fail, W
terminates. Analogously to the dependency relation used in the definition of de-
pendency safety, the wait dependency relation used here is an application-specific
relation; the intention is that if a wait operation W depends on a computation
A, this means that, abstractly speaking, W waits for a signal to be sent by A. In
Java, a typical example of this is when W is an Object .wait call on some object
o and A at some point performs an Object .notifyAll call on o.

Failboxes can be used to achieve wait dependency safety. We say that a
program uses failboxes correctly for the purpose of wait dependency safety if
whenever in a given program execution, a wait operation W depends on a com-
putation A, then A runs in a failbox f and W runs in a descendant of f . We
then have the property that if a program uses failboxes correctly for the purpose
of wait dependency safety, then the program is wait-dependency-safe. Indeed, if
A fails, a stop signal is sent to the thread that is running W . As a result, when
the signal arrives, either W has already terminated, or W is terminated by the
FailboxException thrown by the Fail Fast mechanism. We call this property the
soundness of the Fail Fast mechanism.

A machine-checked proof of this property is available online [12].

5 Cancellation and Compensation

We propose the use of failboxes in programs to make them safe for failures. How-
ever, it turns out that if failboxes are applied correctly in a program, then this
also enables safe cancellation of computations, with no extra effort, and without
the need for polling, through the Fail Fast mechanism. In order to enable can-
cellation of a computation, the program runs it in a dedicated failbox; to cancel
the computation, it calls the Failbox object’s cancel method, which simulates
the occurrence of a failure in the failbox and triggers the Fail Fast mechanism.
This achieves the convenience of the deprecated Thread .stop approach, without
the safety risk.

Consider for example the program of Figure 4. The main loop repeatedly
receives a command and starts a command thread to process it. The processing is
done inside a try-catch statement, and therefore in a per-command child failbox
of the root failbox. This program could be extended to enable cancellation of
commands as follows. In order to cancel a command, the program calls the
command failbox’s cancel method. If the command thread is executing in the
command failbox, it is stopped; however, if it is executing inside the database,
it is allowed to continue to execute until it leaves the root failbox and re-enters
the command failbox, at which point an exception is thrown. Contrast this with
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calling stop on the command thread, which would stop the thread even if it was
running in the database, causing the entire program to fail.

The failboxes mechanism also enables safe compensation. By compensation,
we refer to the scenario where a client computation invokes a service offered by
a provider computation, which changes the provider’s state. This imposes the
obligation on the client to invoke a compensating service to restore the provider’s
state, after the client is done using the service. The conventional approach to
compensation is through try-finally statements. However, an unchecked excep-
tion can cause the compensation action to be skipped, if the exception occurs
after the action that is to be compensated, but before the try block is entered, or
if it occurs after the finally block is entered, but before the compensation action
completes.

This may be addressed using the failboxes mechanism by performing the
following transformation:

init();
try {

// Use the service
} finally {

compensate();
}

⇒

enter (provider) {
init();
reenter (client) {

// Use the service
}
compensate();
}

Before invoking the service, the thread running the client computation enters
the provider’s failbox. After the service is invoked, it re-enters the client failbox
using a nested reenter statement where the client uses the service. When the
client is done using the service, it leaves the nested enter statement, causing
the thread to re-enter the provider failbox, perform the compensating action,
and finally leave the outer enter statement, re-entering the client failbox. This
approach guarantees that either the compensation occurs or the provider failbox
is marked as failed. If an exception occurs while the client uses the service, the
client failbox is marked as failed, but the exception is not propagated by the
reenter statement. This ensures that compensation is not skipped. When the
thread leaves the outer enter statement, it enters the client failbox, which was
marked as failed, and therefore the exception is propagated from that point, as
in the case of the try-finally statement.

6 Proof rules

To show that it is easy to reason about programs that use failboxes, in this
section we propose separation logic proof rules for the main envisaged usage
patterns.

Recall the semantics of separation logic assertions: emp describes the empty
heap, and the separate conjunction P ∗Q describes a heap that can be split into
one that satisfies P and one that satisfies Q:

s, h � emp⇔ h = ∅ s, h � P ∗Q⇔ ∃h1, h2 •h = h1]h2∧s, h1 � P ∧s, h2 � Q
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We extend the syntax of correctness judgments (but not the syntax of asser-
tions) to be failboxes-aware. Specifically,

Σ; f ` {P} s {Q}

denotes the correctness of statement list s under commitment list Σ, current
failbox f , precondition P , and postcondition Q. The syntax of commitment lists
is as follows:

Σ ::= ε | Σ, f : P

We say that assertion P is committed to failbox f . Informally, this means that
to access the resources of P , f must first be entered. Failboxes are denoted using
logical variables.

The above correctness judgment implies the following validity statement:

JΣK ∗ P ⇒ valid(s, JΣK ∗Q, JΣK ∗ true)

(under the assumption that s does not assign to any variables that Σ depends
on) where Σ is here interpreted as a separation logic assertion as follows:

JεK ≡ emp JΣ, f : P K ≡ JΣK ∗ (f ∈ Φ ∨ P )

i.e., for each commitment f : P , either P holds (and is owned by the current
thread) or f has failed. valid(s,Q,R) is true under a given heap, failed set, and
variable environment, if after executing s in this state, upon normal completion
Q holds and upon abrupt completion R holds.

A throw statement always satisfies partial correctness.

C-Throw

Σ; f ` {P} throw; {Q}

For verifying a try-catch statement, the heap is split into two parts: part
Pf is accessed by the try block only inside enter (f) statements, and part P
is accessed freely. The second premise of the rule ensures soundness for normal
completion of the try block. The third is for the case where the try block fails.

C-TryCatch
∀f ′ •Σ, f : Pf ; f ′ ` {P} s {Q} Pf ∗Q⇒ Q′ Σ; f ` {Pf} s′ {Q′}

Σ; f ` {Pf ∗ P} try { s } catch { s′ } {Q′}

(under the assumption that Pf does not depend on any variables that s assigns
to).

An enter block can access the piece of heap associated with the failbox being
entered.

C-Enter
Σ; f ` {P ∗ Pf} s {Q ∗ Pf}

Σ, f : Pf ; f ′ ` {P ∧ x = f} enter (x) s {Q}
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The compensation pattern can be verified as follows.

C-Compensation
Σ; f ` {P ∗ Pf} s1 {Q1 ∗ P ′f ∧ y = f ′}

Σ, f : P ′f ; f ′ ` {Q1} s2 {Q} Σ; f ` {P ′f } s3 {Pf}
Σ, f : Pf ; f ′ `
{P ∧ x = f} enter (x) { s1 reenter (y) { s2 } s3 } {Q}

(under the assumption that P ′f does not care about any variables that s2 assigns
to). The compensation pattern allows the commitment f : Pf to be replaced
temporarily with the commitment f : P ′f .

A machine-checked soundness proof of these proof rules is available online
[12].

We developed a prototype verifier based on these ideas [12].

7 Implementation Issues

We created a prototype implementation of the approach on the .NET Framework
as a C# 3.0 library. C# 3.0’s lambda expression syntax can be used to write
reasonably concise enter statements.

A major complication for achieving a fully correct implementation of the
approach in the form of a library, is the fact that the .NET Framework Common
Language Runtime may throw an exception at any program point, due to an
internal resource limit being reached or an internal error being discovered within
the execution engine [21]. (The same holds for the Java Virtual Machine. See
the Java Virtual Machine Specification, Second Edition [14], Section 2.16.2.)
Specifically, if an enter block completes abruptly with an exception, no internal
exception must intervene between catching the exception and marking the failbox
as failed; otherwise, the enter statement completes without marking the failbox
as failed, breaking dependency safety.

Version 2.0 of the .NET Framework introduced constructs specifically for
writing code that must execute reliably in the presence of internal exceptions
[21]. We used these constructs in our prototype implementation to ensure that
on abrupt completion of the body of an enter statement, the failbox and its
descendants are marked as failed and stop signals are sent to other threads
executing in the failbox or its descendants. Specifically, we used the following
API:

ExecuteCodeWithGuaranteedCleanup(t, c, u)

where t and c are delegates (similar to function pointers in C) and u is arbitrary
user data that is passed to t and c. The API first executes t. When t completes,
either normally or abruptly, the cleanup delegate c is executed. The API guar-
antees that no internal exceptions occur during the execution of c, provided that
c satisfies certain constraints, such as: no heap memory allocation, and no un-
bounded call stack memory allocation. Unfortunately, these constraints have not
been spelled out very precisely anywhere; we had to make some assumptions as
to what can reasonably be executed without the risk of internal exceptions.
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We have performed a few microbenchmark performance tests. These indicate
the following approximate timings for the following statements:

Statement Timing Timing∗

try {} catch {} 13µs 1.9µs
try { enter (f) {} } catch {} 23µs 3.4µs

To measure the impact of the ExecuteCodeWithGuaranteedCleanup construct,
we replaced it with a dummy that uses a simple try-finally statement. The re-
sulting timings are shown in the third column. It turns out that the overhead of
this construct dominates the run time.

Even though the current performance is probably acceptable for most real-
world applications, we believe it can still be improved significantly, in particular
if the constructs are implemented directly in the virtual machine rather than as
a library. Performing such an implementation is future work.

We have also prepared a prototype implementation of failboxes as a library on
the Java virtual machine. However, due to the absence of constructs to prevent
internal or asynchronous exceptions on this platform, the implementation is not
safe in the presence of such exceptions.

The prototype implementations are available on line [12].

8 Related Work

To the best of our knowledge, failboxes are the first approach for programmers
to achieve dependency safety of their Java-like programs that combines low pro-
gramming overhead, low performance overhead, and low reasoning overhead, and
is compositional (i.e. failboxes can be nested arbitrarily).

Languages as operating systems Many extensions of Java have been proposed
that support running multiple programs or tasks in the same virtual machine.
These can typically be used to enforce dependency safety. However, in contrast
to failboxes, all of these have goals beyond dependency safety, typically includ-
ing protection against malicious code, and accounting of memory and other
resources. As a result, they impose greater programming and performance over-
head on communication between tasks than the overhead of switching between
failboxes.

Perhaps the most closely related such system is Luna [11]. To support mem-
ory accounting and immediate guaranteed memory reclamation when a task is
killed, the heap is logically partitioned among the tasks; the only way for one
task to access an object belonging to another task is through a remote pointer,
which is distinguished from local pointers through its type. When a task is killed,
remote pointers pointing into it are revoked, so that if the task was holding a lock,
other tasks do not see inconsistent state. Failboxes offer no memory accounting
or guaranteed memory reclamation, but in turn impose a lower programming
and performance overhead. Specifically, passing data across tasks requires either
copying or the use of remote pointers, both of which incur a programming and
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performance overhead; failboxes, in contrast, allow data to be passed around
freely.

DrScheme [8, 7] is a Scheme environment designed for programs that serve as
platforms for other programs. In DrScheme, it is possible for two child programs
to share a mutable data structure and yet be killed independently. The solution
is to host the data structure in a separate thread, and to access it only via
message passing with this thread. DrScheme’s contribution is that it enables
two untrusted child programs to set up such a shared data structure without
circumventing resource policies and without the need for the shared structure
to be trusted by the kernel. However, from a dependency safety point of view,
the situation is as in Java: DrScheme requires either the use of message passing
between separate threads or manually guarding dependent code.

Erlang [1] is a language focused on reliability. Inconsistent data structures
within a process are ruled out because the language has no destructive up-
date. Processes communicate through asynchronous message passing. Fail-fast
is achieved by linking processes: when a process dies, an exit signal is sent to
linked processes, causing those to die as well by default.

Non-compositional approaches Marlow et al. [16] propose an extension of con-
current Haskell with constructs that make it possible to write safe programs
where one thread throws an asynchronous exception in another thread. The
block e construct disables asynchronous exceptions during execution of e; e can
use unblock e′ to re-enable them during execution of a sub-expression e′. Unlike
failboxes, the block construct is not compositional; for example, in the program
of Figure 4, the addEntry call could be protected against cancellation of jobs us-
ing block; however, imagine the command processing program is part of a larger
system. Then one may want to cancel the program as a whole, including any
addEntry calls. This is possible with failboxes (by cancelling failbox f , which
cancels its descendants as well), but not with the block construct. Also, the con-
struct does not help in dealing with failures; for example, a failure during the
addEntry call would not prevent further accesses to the database. However, the
block construct, or something similar, is useful and even necessary to be able to
robustly implement failboxes as a library in a given language.

Starting with version 2, the .NET Framework includes reliability features that
make it possible to write cleanup routines that are guaranteed to execute even
in the presence of failure or cancellation [21]. However, like the block construct,
the approach is not compositional: these cleanup routines cannot be cancelled;
furthermore, they must be carefully coded to rule out failures within the cleanup
routines themselves since those are not dealt with safely. The mechanism is
intended only for manipulation of execution environment resources; it is not for
general application use.

Three further reliability-related features in .NET Framework version 2 are
the following. Firstly, cancellation is disabled during finally blocks. This en-
ables safe cleanup in the presence of cancellation (but not failure). Secondly,
an unhandled exception in one thread kills all other threads, without executing
catch or finally blocks. However, in the thread that throws the unhandled ex-

D6.1 Programming model and annotations | version 4.0 | page 32/53



ception, finally blocks are executed normally and locks are released, leaving a
time window between the release of the lock and the time the exception reaches
the toplevel (possibly after executing other finally blocks) where other threads
can see inconsistent state. Thirdly, a method Environment .FailFast was added,
which terminates the program immediately.

Rudys et al. [18] propose weaving code into an untrusted plugin (such as
an applet) that polls a cancellation request flag to enable forcibly cancelling the
plugin. The flag is also checked whenever the host system calls into the plugin. In
our approach, a thread running in one failbox may protect itself from cancellation
of its failbox by entering an ancestor failbox to which it has a reference; however,
separate techniques (e.g., perhaps by associating permissions with failboxes)
could be used to prevent this in case the thread is running untrusted code.

The SCOOP multithreading approach for Eiffel [17] has a notion of subsys-
tems. A subsystem in SCOOP is a thread and a set of objects handled by that
thread. Brooke and Paige [3] suggest marking an object as “dead” when the
processing of an asynchronous incoming call fails, causing subsequent calls to
fail immediately. SCOOP subsystems cannot be nested.

Other related work Garcia et al. [9] provide a survey of exception mechanisms.
However, the authors do not discuss the dependency safety issue. In fact, most
modern imperative and/or object-oriented languages have inherited the excep-
tion mechanism of CLU [15] and therefore suffer from the problems addressed
by our approach.

Class-handlers, as proposed by Dony [4] and others, are exception handlers
associated with classes rather than blocks of statements; they apply to all meth-
ods of the class. They would facilitate manually guarding dependent code. For
example, a class-handler on the Database class could set a failed field to true
when an unchecked exception is caught and then re-throw the exception. The
field would still need to be checked manually on entry to each method.

Weimer and Necula [22] propose compensation stacks to make it easier to
write effective cleanup code. However, they do not address the safety issues
identified in Section 5.

Fetzer et al. [5] assume the viewpoint that “exception handling is only ef-
fective if the premature termination of a method due to an exception does not
leave an object in an inconsistent state”. The paper proposes techniques to de-
tect and “mask” non-atomic exception handling, i.e. violations against failure
atomicity. The paper assumes that after catching an exception, the entire ap-
plication should be in a consistent state, whereas we allow failed failboxes to
remain in an inconsistent state, while preventing control from entering a failed
failbox. The authors find a large number of Java methods that are not failure
atomic. This would strengthen the case for failboxes, because it indicates that
exceptions do indeed commonly leave objects in an inconsistent state.

An alternative way to deal with failures is to roll the state of the objects in-
volved back to a consistent state, through the use of transactions (e.g. Shavit and
Touitou [19], Welc et al. [23], Fetzer et al. [5]). However, this has a greater per-
formance overhead; also, it presents problems when the computation that failed
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performed I/O. Our failboxes approach is more conservative from a semantic
and performance point of view.

This work was inspired by our research in program verification for Java-like
languages that is sound in the presence of failures. To the best of our knowledge,
no existing program verifiers for Java-like languages (including ESC/Java [6] and
Spec# [2]) have this property. In Jacobs et al. [13], we propose a verification
approach for Java programs where the programmer manually guards dependent
code using flag variables that track an object’s consistency. The present work
addresses the programming overhead of that approach.

9 Conclusion

We propose a language extension, called failboxes, that facilitates writing sequen-
tial or multithreaded programs that provably preserve intended safety properties
and that do not leak resources, even in the presence of failure, and that perform
safe cancellation of computations. To the best of our knowledge, it is the first
such extension of a Java-like language that combines low programming, perfor-
mance, and reasoning overhead, and that is compositional.

Future work includes gaining experience with our prototype implementation,
mainly to assess the applicability and the usability of the approach. We anticipate
the possible need to facilitate the placement of enter blocks, perhaps through
annotations on methods, classes, or packages, or through some inference scheme.
Other work includes applying the failboxes idea to the problem of exception
handling in asynchronous and callback patterns.
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Abstract

C programs may dynamically load and unload modules. For
example, some operating system kernels support dynamic loading
and unloading of device drivers. This causes specific difficulties in
the verification of such programs and modules; in particular, it must
be verified that no functions or global variables from the module are
used after the module is unloaded.

We propose a separation-logic-based approach for the verification
of such programs and modules. We propose proof rules for loading
and unloading modules, and for dealing with pointers to functions in
unloadable modules, that ensure soundness while imposing minimal
verification overhead. We offer a formalization and we report on
verifying a small kernel-like program using a prototype implemen-
tation of the approach in our verifier, VeriFast. To the best of our
knowledge, ours is the first approach for sound modular verification
of unloadable modules.
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Abstract. C programs may dynamically load and unload modules. For
example, some operating system kernels support dynamic loading and
unloading of device drivers. This causes specific difficulties in the verifi-
cation of such programs and modules; in particular, it must be verified
that no functions or global variables from the module are used after the
module is unloaded.
We propose a separation-logic-based approach for the verification of such
programs and modules. We propose proof rules for loading and unloading
modules, and for dealing with pointers to functions in unloadable mod-
ules, that ensure soundness while imposing minimal verification over-
head. We offer a formalization and we report on verifying a small kernel-
like program using a prototype implementation of the approach in our
verifier, VeriFast. To the best of our knowledge, ours is the first approach
for sound modular verification of unloadable modules.

1 Introduction

In statically typed safe programming languages (including Java, C#, the ML
family, and Haskell), code is immutable and permanent.1 That is, both statically
bound and dynamically bound routine calls always succeed and are bound to
code that satisfies the static type of the call. Also, if an object reference or
function value satisfies a given contract at one point in time, it continues to do
so forever.

This is not the case in dynamically typed languages like LISP, Scheme,
JavaScript, Ruby, or Python, and in unsafe languages like C and C++. In C,
if at one point during execution a function pointer points to a function that
satisfies a given contract, this does not mean it always will. The module (DLL,
shared object, ...) containing the function may be unloaded, or the function’s
code may reside on the stack or in a malloc’ed piece of memory.

Existing verification approaches for C programs (VCC [4], Frama-C [1], HAVOC
[5], Smallfoot [2], our own verifier VeriFast [7], Jahob [9]) assume that the pro-
gram is unchanging and is not part of the mutable state. As a result, these

? Bart Jacobs is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO).
1 Some of these languages may garbage collect code that is unreachable, but this is

unobservable.
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approaches cannot be used for sound verification of programs that involve the
unloading of code.

In this paper, we propose a separation-logic-based approach for extending a
verification approach for C programs to enable verification of programs involving
code unloading. The approach is simple: execution of unloadable code at a given
address requires a permission to read at the address and a proof that the code
at this address has the expected behavior. Specifically, execution of the body of
a function in an unloadable module requires an abstract permission that states
that the module is currently loaded.

The conventional approach for verifying dynamically bound calls in separa-
tion logic is through predicate families [8], i.e. abstract predicates indexed by the
target function. VeriFast, for example, has used predicate families indexed by
function pointer to verify function pointer calls. However, this is not applicable
to unloadable code since the function pointer no longer immutably identifies a
specific function. Therefore, in our approach, we drop the use of predicate fami-
lies and instead we use parameterized function types combined with higher-order
predicates.

We implemented the approach in our prototype verifier, VeriFast, and we
verified a small server that allows clients to load modules, unload modules, and
use services provided by the modules, mimicking operating system kernels that
may dynamically load and unload device drivers. The implementation and the
example are online at http://www.cs.kuleuven.be/˜bartj/verifast/.

The rest of the paper is structured as follows. First, in Section 2, we show how
programs involving dynamic code loading, but not unloading, may be verified
in VeriFast. Then, in Section 3, we present the extensions required to enable
verification of code unloading. In Section 4 we further extend the example to
get a fully abstract treatment. We provide a formal treatment in Section 5.
We discuss the implementation in Section 6 and related work in Section 8. We
conclude in Section 9.

2 Dynamically loaded code

The C program in Figure 1 illustrates dynamic code loading. It is safe, and
VeriFast can confirm this thanks to the annotations shown on a gray background.

Execution proceeds as follows. The main program, a.c, dynamically loads the
shared object b.so, generated from b.c, and looks up the getIncr function in that
object. If the function is not found, the program aborts. Otherwise, it calls the
function to retrieve another function, which it then calls as well.

The soundness of the verification approach used in this example, is based
on the assumption that the mapping from function names to function types
(with their associated contract), as specified in b.spec in the example, is globally
unique. This seems realistic, especially if sufficiently long and distinctive names
are chosen, and if the origin of the code is trusted, e.g. through code signing.
An alternative approach would be to submit the module to a verification tool at
load time.
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// dlfcn.h
void ∗dlopen(char ∗name);

requires string(name);

ensures string(name) ∗ lib(result);

// b.h
typedef int incrType(int x);

requires true;

ensures result− 1 = x;

typedef incrType ∗getIncrType();

requires true;

ensures is incrType(result);

// a.c
#include ”dlfcn.h”
#include ”b.h”
#include ”b proxy.h”

void main()

requires true;

ensures true;

{
void ∗` = dlopen(”b.so”);
getIncrType ∗f = dlsym getIncr(`);
if (f = 0) abort();
incrType ∗g = f();
int y = g(41);
assert(y = 42);

}

// b.spec

getIncr : b.h#getIncrType

// b proxy.h (generated from b.spec)
#include ”b.h”

getIncrType ∗dlsym getIncr(void ∗`);
requires lib(`);

ensures lib(`) ∧ (result = 0 ? true :
is getIncrType(result));

// b proxy.c (generated from b.spec)
getIncrType ∗dlsym getIncr(void ∗`)
{ return dlsym(`, ”getIncr”); }

// b.c
#include ”b.h”

int myIncr(int x) : incrType

{ return x+ 1; }

incrType ∗getIncr()

: getIncrType

{ return myIncr ; }

Fig. 1. An example of dynamic loading, but not unloading, in C. VeriFast annotations
are shown on a gray background
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3 Code unloading

Suppose we added the following contract to dlfcn.h in Figure 1:

void dlclose(void ∗`);
requires lib(`);
ensures true;

Clearly, this would be unsound, since this contract would allow the main
program to unload the library and then perform calls through function pointers
that point into the library.

To enable unloading, we extend the approach with four ingredients. Firstly,
we add module names as first-class values inside annotations. For example, the
module name of b.c is b and this name may be used as an expression in annota-
tions. Secondly, we add a built-in predicate module, that takes a module name
and states that this module is currently loaded. Thirdly, a module may declare
itself to be unloadable. The precondition of each function of an unloadable
module m must imply module(m), and this permission is unavailable for the
duration of the function’s execution. Also, each module that exports symbols
for dynamic linking must be unloadable.2 Finally, we allow function types to be
parameterized by arbitrary values, including module names.

In Figure 2, we show the example of Figure 1, modified so that the main pro-
gram now unloads the module after performing the function calls. The contracts
have been updated to include the module permission.

4 Abstraction

The example of Figure 2 is lacking in abstraction. For example, suppose we want
to write a module that logs calls to the incr function. This is not possible given
the precondition of incrType in b.h, which provides access only to the module
image.

To enable this implementation, we parameterize incrType not by a module
name, but by an arbitrary predicate P . Further, in order to allow the logging
infrastructure to be torn down after the client is done using the module, the
getIncr function returns not just a pointer to the incr function, but a struct
containing both a pointer to the incr function and a pointer to a dispose function.

The implementation, with annotations, is shown in Figure 3. The implemen-
tation now uses global variables. To support these, we extend the verification
approach with three new ingredients. Firstly, we add another built-in predicate
code, which takes a module name and represents the code of the named mod-
ule. Secondly, the module predicate now represents not just the module’s code
but its global variables as well. That is, it is the separate conjunction of the
code and the globals. Thirdly, we introduce a variant of the module predicate,
2 This may be relaxed by specifying in the spec file whether the module is unloadable

or not, and adapting the proxy contract accordingly
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// dlfcn.h
void ∗dlopen(char ∗name);

requires string(name);

ensures string(name) ∗
∃m • lib(result,m) ∗module(m);

void dlclose(void ∗`);
requires ∃m • lib(`,m) ∗module(m);

ensures true;

// b.h

typedef int incrType (m) (int x);

requires module(m);

ensures module(m) ∧ result− 1 = x;

typedef incrType ∗getIncrType (m) ();

requires module(m);

ensures module(m) ∧
is incrType(result,m);

// a.c
#include ”dlfcn.h”
#include ”b.h”
#include ”b proxy.h”

void main()

requires true;

ensures true;

{
void ∗` = dlopen(”b.so”);
getIncrType ∗f = dlsym getIncr(`);
if (f = 0) abort();
incrType ∗g = f();
int y = g(41);
dlclose(`);
assert(y = 42);

}

// b.spec

getIncr : b.h#getIncrType

// b proxy.h (generated from b.spec)
#include ”b.h”

getIncrType ∗dlsym getIncr(void ∗`);
forall m;

requires lib(`,m);

ensures lib(`,m) ∧ (result = 0 ∨
is getIncrType(result,m));

// b.c
#include ”b.h”

unloadable;

int myIncr(int x) : incrType(b)

{ return x+ 1; }

incrType ∗getIncr()

: getIncrType(b)

{ return myIncr ; }

Fig. 2. The example of Figure 1, with unloading added, but lacking in abstraction
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named module0, which represents the same state, but additionally states that
the globals hold their initial value. The contract of dlopen is updated to provide
module0.

5 Formal System

In this section, we formalize the approach and state the soundness theorem. A
detailed soundness proof is future work.

The rest of this section is structured as follows. In Section 5.1, we introduce
the formal programming language and execution model, and we illustrate it using
an example program and module. In Section 5.2, we define the syntax and the
semantics of the specification language, and we show the specification for the
example module. Finally, in Section 5.3, we introduce the proof system, we state
its soundness theorem, and we show a proof outline for the example module.

5.1 Language Syntax and Semantics

The formal programming language is an extension of the standard separation
logic language with function pointer call and module load and unload commands,
and with function values L. The latter are used to represent pieces of code in
the heap. Its syntax is as follows:

n ∈ Z, x ∈ Vars, τ ∈ FunTypes
e ::= n | x | e+ e | e− e
b ::= e = e | e < e
c ::= x := cons(e) | x := [e] | [e] := e | dispose(e) | x := e

| if b then c else c | (c; c) | x := call e(e)
| x := load e as τ | unload(e)

L ::= lambda (x) c

We adopt the standard run-time state of separation logic, consisting of a
store s, a total function that maps program variable names to integers, and a
heap h, a partial function that maps positive integer addresses to integer values.
In order to be able to store function values in the heap, we assume a one-to-one
encoding b·c of function values into integers.

To model the loading and unloading of modules, we assume the existence of a
module repository Modules, which is a finite map from module names to module
definitions. A module definition consists of a module contract and a module
image. We assume each module has a single entry point; therefore, the module
contract is simply the function contract for the single entry point. We assume a
set FunTypes of function type names, and a mapping from function type names
to contracts. The run-time semantics is concerned only with the names and not
the meanings of the function types. It uses them to perform a run-time type
check. The module image is simply a tuple of one or more integers. The first
element of the tuple is the encoded code for the module’s entry point; the other
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// b.h

typedef int incrType (P ) (int x);

requires P ;
ensures P ∧ result− 1 = x;

typedef void disposeType (o, P,m) ();

requires obj (o, , ) ∗ P ;
ensures module(m);

struct obj {
incrType ∗incr ;
disposeType ∗dispose;
};

predicate obj (o, d, p) =
o→incr 7→ p ∗ o→dispose 7→ d;

typedef struct obj ∗
getIncrType (m) ();

requires module0(m);
ensures
∃P, d, p • obj (result, P,m, d, p) ∗ P
∧ is incrType(p, P )
∧ is disposeType(d, result, P,m);

// a.c
#include ”dlfcn.h”
#include ”b.h”
#include ”b proxy.h”

void main()

requires true; ensures true;

{
void ∗` = dlopen(”b.so”);
getIncrType ∗f =

dlsym getIncr(`);
if (f = 0) abort();
struct obj ∗o = f();
int y = o→incr(41); assert(y = 42);
o→dispose(); dlclose(`)

}

// dlfcn.h
void ∗dlopen(char ∗name);

requires string(name);
ensures string(name) ∗
∃m • lib(result,m) ∗module0(m);

void dlclose(void ∗`);
requires ∃m • lib(`,m) ∗module(m);
ensures true;

// b.spec

getIncr : b.h#getIncrType

// b proxy.h (generated from b.spec)
#include ”b.h”

getIncrType ∗dlsym getIncr(void ∗`);
forall m;
requires lib(`,m);
ensures lib(`,m) ∧ (result = 0 ∨

is getIncrType(result,m));

// b.c
#include ”b.h”
#include ”logging.h”

unloadable;

struct logchannel ∗chan;

predicate Q = code(b) ∗
∃c • chan 7→ c ∗ logchannel(c);

int myIncr(int x) : incrType(Q)

{ logCall(chan); return x+ 1; }
struct obj o = {myIncr ,myDispose};
void myDispose() : disposeType(o,Q, b)

{ disposeLogChannel(chan); }
struct obj ∗getIncr()

: getIncrType(b)

{ chan = allocLogChannel(); return o; }

Fig. 3. The example of Figure 2, with better abstraction
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elements may be code or data. We assume a one-to-one encoding b·c of module
names to integers.

The dynamic semantics is given by the step rules in Figure 4. A run-time
configuration consists of a state (i.e. a store and a heap) and a continuation.
This is either a done continuation, denoting the successful termination of the
program, a return continuation, denoting a caller stack frame, or a command
continuation:

κ ::= done | ret(x, s, κ) | c;κ
A return continuation specifies the variable x that will receive the return value,
and the saved store.

Most rules are standard. A function pointer call x := call e(e) looks for an
encoded function value lambda (x) c at the address given by e. It gets stuck
if the address is not allocated, if the value at the address does not encode a
function value, or if the length of the argument list does not match the length
of the parameter list. Otherwise, it pushes a return continuation and executes
the body of the function value under a store that binds the parameters to the
corresponding arguments and the variable ip (for instruction pointer) to the
address given by e.

When the body of a function value completes, the caller’s store is restored,
and the return value of the function value, written by convention into variable
result, is assigned to the target variable of the call.

A command x := load e as τ , where τ is a function type name, fails if there
is no module whose name is encoded by the value of e, or if there is one but its
contract is not τ . In that case, the command returns zero. Otherwise, it allocates
m + 1 consecutive memory locations, where m is the size of the module image.
It writes the size itself into the first location, and the module image into the
subsequent locations. It returns the address of the first location. As a result, the
module’s entry point is at the returned address plus one.

Command unload(e) gets stuck if the memory location at the address given
by e is not allocated, holds a negative value, or holds a value m such that some of
the m next memory locations are not allocated. Otherwise, it deallocates these
m+ 1 memory locations.

Figure 5 shows an example main program and module repository holding a
single module, called myIncrLib. The main program starts by loading the module
whose name is given by the initial value of variable libName, which is assumed
to be provided by the user; i.e., it is arbitrary. It then calls the loaded module’s
entry point, which it assumes returns a pointer to a struct that has two fields,
the first of which points to a function that returns its argument incremented by
one, and the second one serves to clean up any resources used by the module.
It first calls the incrementor function, and asserts that it indeed incremented its
argument. (It performs a null pointer dereference if it did not.) It then calls the
dispose function, and finally unloads the module.

The example module’s image consists of six values, the first three of which
are encoded function values, and the latter will serve as global variables. To
illustrate that our approach performs strong abstraction and allows the module
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Cons
0 < ` dom(h) ∩ {`, . . . , `+m− 1} = ∅

〈s, h, x := cons(e1, . . . , em);κ〉 〈s[x := `], h[` := Je1Ks, . . . , `+m− 1 := JemKs], κ〉

Lookup
(JeKs, v) ∈ h

〈s, h, x := [e];κ〉 〈s[x := v], h, κ〉

Mutate JeKs ∈ dom(h)

〈s, h, [e] := e′;κ〉 〈s, h[JeKs := Je′Ks], κ〉

Dispose
(JeKs, v) ∈ h

〈s, h,dispose(e);κ〉 〈s, h \ {(JeKs, v)}, κ〉
Assign
〈s, h, x := e;κ〉 〈s[x := JeKs, h, κ〉

IfTrue JbKs = true

〈s, h, if b then c else c′;κ〉 〈s, h, c;κ〉

IfFalse JbKs = false

〈s, h, if b then c else c′;κ〉 〈s, h, c′;κ〉
Seq
〈s, h, (c; c′);κ〉 〈s, h, c; (c′;κ)〉

Call
(JeKs, blambda (x) cc) ∈ h |x| = |e|

〈s, h, x := call e(e);κ〉 〈(λ • 0)[ip := JeKs][x := e], h, c; ret(s, x, κ)〉

Return
〈s, h, ret(s′, x, κ)〉 〈s′[x := s(result)], h, κ〉

LoadSuccess
(JeKs, (τ, (v1, . . . , vm))) ∈ Modules 0 < ` dom(h) ∩ {`, . . . , `+m} = ∅
〈s, h, x := load e as τ ;κ〉 〈s[x := `], h[` := m, `+ 1 := v1, . . . , `+m := vm], κ〉

LoadFail
¬∃v • (JeKs, (τ, (v))) ∈ Modules

〈s, h, x := load e as τ ;κ〉 〈s[x := 0], h, κ〉

UnloadJeKs = ` {(`,m), (`+ 1, v1), . . . , (`+m, vm)} ⊆ h
〈s, h,unload(e);κ〉 〈s, h \ {(`,m), (`+ 1, v1), . . . , (`+m, vm)}, κ〉

Fig. 4. Step rules
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flexibility in implementation, the module’s incrementor function does not simply
increment its argument, but additionally tracks the number of calls made to
it in a dynamically allocated cell. The cell is allocated by the module’s entry
point, and its address is stored in the third global variable. The first two global
variables will serve as the struct that is returned to the client by the module’s
entry point. The entry point writes a pointer to the incrementor function and the
dispose function into the struct, allocates the counter cell, and then returns the
address of the struct. The incrementor function, whose code resides in the second
element of the module image, increments the counter cell and then returns its
argument plus one. The dispose function, which resides in the third position,
simply disposes the counter cell.

Modules = {
(myIncrLib, (getIncrType, (
blambda () [ip + 3] := ip + 1;

[ip + 4] := ip + 2;x := cons(0); [ip + 5] := x; result := ip + 3c,
blambda (x) c := [ip + 4];n := [c]; [c] := n+ 1; result := x+ 1c,
blambda () x := [ip + 3]; dispose(x)c,
0,
0,
0

)))
}
main =
` := load libName as getIncrType;
if ` = 0 then x := x else (

getIncr := `+ 1; o := call getIncr();
incr := [o]; r := call incr(42);
if r = 43 then x := x else [0] := 0; // assert(r = 43)
dispose := [o+ 1]; dummy := call dispose();
unload `

)

Fig. 5. Example program in the formal language

5.2 Specification Language

The specification language is an extension of separation logic with special-purpose
predicates lib, module0, and module, for dealing with module loading and un-
loading, as well as with parameterized function types and assertion closures for
dealing with dynamic code more generally.

Expressions in assertions may be constants, program variables, logical vari-
ables, operator applications, and assertion closure expressions. Evaluation of an
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assertion closure expression yields an assertion closure C, which records the in-
terpretation I of the free logical variables of the assertion and the store s that
provides the value of the free program variables of the assertion.

The assertion E : τ(E) asserts that the address denoted by E satisfies the
function type τ instantiated with arguments E. The assertion closure application
expression E(E) applies arguments E to the assertion closure denoted by E.
lib(E,E′) denotes the management information (i.e. the size field) for the loaded
module named E′ at address E. module0(E,E′) asserts that the module image
of the module named E′ is at address E + 1 and following, and it is in its initial
state. module(E,E′) asserts that there are m allocated memory locations at
addresses E + 1 and following, where m is the size of the module named E′.

Assertions are interpreted in the context of a set of function type declara-
tions and named predicate declarations. A function type declaration specifies a
function type name, a list of function type parameters, a list of function param-
eters, a precondition, and a postcondition. A predicate declaration specifies a
predicate name, a list of parameters, and a body.

n ∈ Z, x ∈ ProgVars, y ∈ LogVars, op ∈ Operators
E ::= n | x | y | op(E) | lambda (y) A
C ::= lambdaI,s (y) A
A ::= emp | E 7→ E | E = E | A ∧A | A ∨A | A ∗A | ∃y •A

| E : τ(E) | p(E) | E(E)
| lib(E,E) | module0(E,E) | module(E,E)

ftdecl ::= funtype τ(y)(x) req A ens A
pdecl ::= predicate p(y) = A

The semantics of assertion expressions, assertions, and function type judg-
ments is given in Figure 6. The figure uses the following auxiliary notions derived
from the semantics of the programming language.

Stuck = {γ | ¬∃γ′ • γ  γ′}
Bad = {γ | ∃γ′ ∈ Stuck • γ  ∗ γ′}
Pre(c) = {(s, h) | 〈s, h, c; done〉 /∈ Bad}
Post(c) = {((s, h), (s′, h′)) | 〈s, h, c; done〉 ∗ 〈s′, h′,done〉}

We consider a configuration γ to be bad if it can lead to a stuck configuration.
The precondition of a command is the set of initial states that will not lead to a
stuck configuration. The postcondition relates the pre-states and the post-states.

A function type judgment ` : τ(v) holds, i.e., an address ` satisfies function
type τ instantiated with arguments v, if and only if the instantiated precondition
of the function type implies that there is a function value at address ` that
satisfies the function type’s instantiated contract.

In general, the equations of Figure 6 do not qualify as definitions, since they
may have multiple solutions, or no solution at all. To avoid this, we impose the
following restrictions. We impose an order on function types and predicates, so
that each of these may mention only earlier ones in its definition. Further, we
do not allow assertion closure applications inside assertion closures. We believe
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JxKI,s = s(x)JyKI,s = I(y)Jop(E)KI,s = JopK(JEKI,s)Jlambda (y) AKI,s = blambdaI|freeLogVar(A)\{y},s|freeProgVar(A)
(y) Ac

I, s, h � emp ⇔ h = ∅
I, s, h � E 7→ E′ ⇔ h = {(JEKI,s, JE′KI,s)}
I, s, h � E = E′ ⇔ JEKI,s = JE′KI,s

I, s, h � A ∧A′ ⇔ I, s, h � A ∧ I, s, h � A′
I, s, h � A ∨A′ ⇔ I, s, h � A ∨ I, s, h � A′
I, s, h � A ∗A′ ⇔ ∃h1, h2 • h = h1 ] h2 ∧ I, s, h1 � A ∧ I, s, h2 � A′
I, s, h � ∃y •A ⇔ ∃n ∈ Z • I[y := n], s, h � A
I, s, h � E : τ(E) ⇔ JEKI,s : τ(JEKI,s)

I, s, h � p(E) ⇔ ∃y,A • (predicate p(y) = A)

∧ (λ • 0)[y := JEKI,s], (λ • 0), h � A
I, s, h � E(E1, . . . , Em) ⇔ ∃I ′, s′, y1, . . . , ym, A • JEKI,s = blambdaI′,s′ (y1, . . . , ym) Ac

∧ I ′[y1 := JE1KI,s] · · · [ym := JEmKI,s], s′, h � A
I, s, h � lib(E,E′) ⇔ ∃(M, (τ, (v1, . . . , vm))) ∈ Modules •JE′KI,s = bMc ∧ h = {(JEKI,s,m)}
I, s, h �module0(E,E′) ⇔ ∃(M, (τ, (v1, . . . , vm))) ∈ Modules, ` ∈ Z •JEKI,s = ` ∧ JE′KI,s = bMc ∧

h = {(`+ 1, v1), . . . , (`+m, vm)}
I, s, h �module(E,E′) ⇔ ∃(M, (τ, (v1, . . . , vm))) ∈ Modules, `, v′1, . . . , v

′
m ∈ Z •JEKI,s = ` ∧ JE′KI,s = bMc ∧

h = {(`+ 1, v′1), . . . , (`+m, v′m)}

` : τ(v) ⇔
∀I, s, h • I(y) = v ∧ I, s, h � P ⇒
∃L, c • (`, bLc) ∈ h ∧ L ≈ lambda (x) c
∧ (s, h) ∈ Pre(c)
∧ ∀s′, h′ • ((s, h), (s′, h′)) ∈ Post(c)⇒

I, s[result := s′(result)], h′ � Q
where funtype τ(y)(x) req P ens Q

Fig. 6. Semantics of assertions and function type judgments. ≈ denotes equality of
function values up to alpha conversion.
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this ensures well-definedness of the semantics. Furthermore, they are sufficient
for the programs we considered. Relaxing these restrictions is future work.

Figure 7 shows the definition of the contract of the example module of Fig-
ure 5. The entry point’s contract getIncrType requires the module’s image in its
initial state, and returns the struct containing the pointer to the incrementor
function and the dispose function, as well as the remainder of the module’s state
in the form of existentially quantified assertion closure value P . The incrementor
function type incrType simply requires and ensures the module state P . The dis-
pose function type disposeType takes back the struct with the function pointers
and the module state, and returns the module image, ready for unloading.

funtype incrType(P )(x)
req P
ens P ∧ result = x+ 1

funtype disposeType(o, P, `,m)()
req o 7→ ∗ o+ 1 7→ ∗ P
ens module(`,m)

funtype getIncrType(`,m)()
req module0(`,m)
ens ∃P, p, d • result 7→ p ∗ result + 1 7→ d ∗ P
∧ p : incrType(P ) ∧ d : disposeType(o, P, `,m)

Fig. 7. Definition of function type getIncrType

5.3 Proof System

The proof system is an extension of the proof rules of separation logic with proof
rules for deriving function type judgments, and for verifying function pointer
call and module load and unload commands, and for folding and unfolding the
module assertions. The new proof rules are shown in Figure 8.

Rule C-FunType allows one to derive a function type judgment guarded by
a pure boolean expression φ. The latter serves to express constraints on the free
logical variables that appear in the judgment. The other rules are straightfor-
ward.

We can now define validity of a module.

Definition 1. A module is valid if its entry point satisfies the function type
given by its contract, instantiated with the address where the module is loaded
and the module name.

(M, (τ, v)) ∈ Modules ⇒ (valid(M)⇔ ` ∀` • `+ 1 : τ(`,M))
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C-FunType
funtype τ(y)(x) req P ens Q

freeLogVars(φ,E,E) ∩ freeLogVars(y, P,Q) = ∅ freeProgVars(φ,E,E) = ∅
φ ∧ P [E/y]⇒ E 7→ blambda (x) cc ∗ true {φ ∧ P [E/y] ∧ ip = E} c {Q}

φ⇒ E : τ(E)

C-Call
funtype τ(y)(x) req P ens Q

{e : τ(y) ∧ e = y′ ∧ P [y′/x]} x := call e(e) {Q[y′/x, x/result]}

C-Load

{emp ∧ e = y}
x := load e as τ
{x = 0 ∧ emp ∨ 0 < x ∧ lib(x, y) ∗module0(x, y) ∧ x+ 1 : τ(x, y)}

C-Module-Unfold
(M, (τ, (v1, . . . , vm))) ∈ Modules

module0(y,M)⇒ y + 1 7→ v1 ∗ . . . ∗ y +m 7→ vm

C-Module-Fold
(M, (τ, (v1, . . . , vm))) ∈ Modules

y + 1 7→ ∗ · · · ∗ y +m 7→ ⇒module(y,M)

C-Unload

{lib(e, y) ∗module(e, y)} unload(e) {emp}

Fig. 8. Proof rules

The proof of the example module is straightforward. Figure 9 gives an outline.
The assertion closure parameter P is instantiated with predicate Q applied to
the address where the module is loaded. This predicate encompasses the module
image, plus the counter cell, minus the struct containing the function pointers.

We can now state the soundness theorem of our approach. It uses the notion
of a valid command.

Definition 2 (Valid Command). A command c is valid if is satisfies the
following triple:

` {emp} c {true}

Theorem 1 (Soundness). If each module in the module table is valid, and the
main program is valid, then execution does not get stuck.

A soundness proof is future work.
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predicate Q(`) =
`+ 1 7→ blambda () [ip + 3] := ip + 1;

[ip + 4] := ip + 2;x := cons(0); [ip + 5] := x; result := ip + 3c ∗
`+ 2 7→ blambda (x) c := [ip + 4];n := [c]; [c] := n+ 1; result := x+ 1c ∗
`+ 3 7→ blambda () x := [ip + 3]; dispose(x)c ∗
∃c • `+ 6 7→ c ∗ c 7→

∀` • `+ 2 : incrType(lambda () Q(`)) by C-FunType (1)
∀` • `+ 3 : disposeType(`+ 4, lambda () Q(`), `,myIncrLib) by C-FunType, C-Module-Fold (2)
∀` • `+ 1 : getIncrType(`,myIncrLib) by C-FunType,C-Module-Unfold,(1),(2)

Fig. 9. Proof outline of the validity of module myIncrLib

6 Verification Tool

We implemented the approach in our prototype verifier, VeriFast, and we ver-
ified a small server that allows clients to load modules, unload modules, and
use services provided by the modules, mimicking operating system kernels that
may dynamically load and unload device drivers. The implementation and the
example are online at http://www.cs.kuleuven.be/˜bartj/verifast/.

7 Future work

The approach, as presented in this paper, is directly applicable to some impor-
tant instances of dynamic code loading and unloading, notably loadable device
drivers in the Linux kernel. However, in certain other cases, there are additional
complexities that are not yet addressed by the approach.

Specifically, the user-space shared library mechanisms of most operating sys-
tems (notably Unix-like or Windows operating systems) are complicated by the
fact that loading a module might yield a new reference to an existing instance of
the module, rather than a fresh instance of the module. Therefore, in this context
it is not sound for the proof rule for loading a library to grant full permission to
the module’s code and global variables.

Another item of future work is to add support for libraries or programs con-
sisting of multiple modules. We envisage extending the specification language to
allow a module B to import another module A. A module B’s module predicate
would then denote not just B’s code and global variables, but would include A’s
module predicate as well. A link-time check would ensure that there is no cycle
in the module import graph.

A third item of future work is to investigate the interaction between the
previous two: how to verify a program or library that specifies a load-time de-
pendency on another library? Here, too, the library sharing issue arises: if two
libraries B and C specify a dependency on some library A, then B and C will
be linked at load time against the same instance of library A.
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8 Related Work

The approach presented in this paper builds on and extends separation logic.
Existing verification systems for separation logic include Smallfoot [2], jStar [6]
and YNOT [3]. However, to the best of our knowledge, none of these systems
can be used for verifying programs that use unloadable code.

9 Conclusion

Existing verification approaches for C programs (VCC [4], Frama-C [1], HAVOC
[5], Smallfoot [2], our own verifier VeriFast [7], Jahob [9]) cannot be used for
verifying programs that involve unloading of code as they assume that the code
is unchanging and is not part of the mutable state. In this paper, we propose a
novel separation-logic-based approach for extending a verification approach for
C programs to enable verification of programs involving code unloading.
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